Contents lists available at ScienceDirect

ELSEVIER

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Short communication

Sullivantosides A-F: Pregnane glycosides from Asclepias sullivantii L.

Juan J. Araya^a, Kelly Kindscher^b, Barbara N. Timmermann^{c,*}

^a Centro de Investigaciones en Productos Naturales, Escuela de Química; Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica

^b Kansas Biological Survey, University of Kansas, Lawrence, KS 66047, USA

^c Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA

Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, O

ARTICLE INFO

Article history: Received 3 February 2016 Received in revised form 5 April 2016 Accepted 14 April 2016 Available online xxx

Keywords: Asclepias sullivantii Pregnane glycosides Asclepiadeaceae

1. Introduction

Asclepias sullivantii—commonly known as "prairie milkweed"is native to the United States and Canada, where in the northern states (Minnesota, Wisconsin, and Michigan) it is listed as a threatened species (USDA, 2015). This species is predominantly found in humid and relatively undisturbed lowland habitats such as the native prairies of Kansas, Missouri, and Illinois. Currently, there are 75 recognized species of Asclepias in the United States (USDA, 2015). Our ethnobotanical database lists over 400 specific uses of Asclepias species by over 60 Native American tribes, yet A. sullivantii is not one of these species. This maybe due to the fact that the species is rather uncommon and confined to such a small range, but there is evidence to suggest that it may have been used medicinally for a variety of treatments like similar and more common Asclepias species (Kindscher, 1987, 1992).

The Asclepias genus is known to contain cardiac and pregnane glycosides (Araya et al., 2012a; Warashina and Noro, 2003, 2009). As part of our ongoing effort to study the chemical diversity and medicinal potential of the flora from Kansas, the phytochemistry of *A. sullivantii* was investigated. To the best of our knowledge, this report represents the first known phytochemical investigation of the title plant.

* Corresponding author. *E-mail address:* btimmer@ku.edu (B.N. Timmermann).

http://dx.doi.org/10.1016/j.phytol.2016.04.011

1874-3900/ \odot 2016 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

ABSTRACT

Phytochemical investigation of the above-ground biomass of *Asclepias sullivantii* L. (Asclepiadaceae) afforded six new pregnane glycosides, named sullivantosides A-F **(1–6)**. The structures of **1–6** were elucidated through a variety of spectroscopic and spectrometric techniques (1D and 2D NMR; HRESIMS). To the best of our knowledge, this work represents the first phytochemical study of this species.

© 2016 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

2. Material and methods

2.1. General experimental procedures

Melting points were recorded with an OptiMelt automatic apparatus. IR spectra were obtained with a Thermo Nicolet Avatar 380 FT-IR. UV–vis spectra were recorded on a Varian Cary 50 Scan; ¹H NMR, ¹³C NMR and 2D spectra were recorded with a Bruker Avance AV-III 500 with a dual carbon/proton cryoprobe. HRESIMS were conducted with an LCT Premier Waters Corp. (Milford, MA). Preparative HPLC separations were done using an Agilent 1100HPLC system with a Phenomenex Luna C18 column (5 μ m, 250 21 mm), flow rate of 35 mL/min (aprox. 35 bar), injection volume of 800 μ L (ca. 100 mg sample), and UV detection using multi-wavelength detector. Semi-preparative HPLC was conducted using an Agilent 1200HPLC system with a Phenomenex Luna C18 column (5 μ m, 250 10 mm), flow rate of 4.5 mL/min (approx. 160 bar), injection volume of 50 μ L (ca. 10 mg sample), and UV detection using diode array.

2.2. Plant material

Above-ground biomass (stems, leaves, and flowers) of *A. sullivantii* was collected on April 24, 2010, by Kelly Kindscher and Juan Araya. The plant material was collected 2 km northeast of Welda, Kansas at the University of Kansas, Anderson County Prairie Preserve. The GPS location of the collection site was LAT 38.18052, LONG 95.27485. Botanical identification was performed by Kelly Kindscher, and a botanical specimen was deposited in the McGregor Herbarium of the University of Kansas (Kindscher 4039).

2.3. Extraction and isolation

The collected fresh biomass (5.5 kg) was left to dry at room temperature (time period needed). The resulting dry material (1.1 kg) was then ground to a fine powder and extracted four times with MeOH-CH₂Cl₂ (1:1, v/v) at room temperature. The organic solvents (c.a. 10 L) were removed under reduced pressure to afford the crude extract (102.0 g, 9.1% w/w of dry weight). The organic extract was suspended in MeOH-H₂O (9:1, 1L) and partitioned with hexanes (500 mL, three times) to give a hexanes fraction. The resulting aqueous layer was subjected to rotary evaporation to remove the dissolved MeOH, the volume adjusted to 500 mL with distilled H₂O, and successively partitioned with CH₂Cl₂ (500 mL, three times) and *n*-BuOH (500 mL, three times) to give CH_2Cl_2 and *n*-BuOH fractions, respectively. The CH_2Cl_2 fraction (20g) was subjected to a large silica gel flash column chromatography (200 g)to afford 14 fractions (CH₂Cl₂-1 to CH₂Cl₂-14). Fraction CH₂Cl₂-13 (6.60 g) was separated using automatic flash chromatography (RP-C₁₈ prepacked column, 200 g) using a linear gradient (from 20% MeOH to 100% MeOH in 45 min) to yield 7 subfractions (SF1-7). To remove pigmentation, the SF5 subfraction (2.20 g) was subjected to Sephadex LH-20 (500g) column chromatography (MeOH as mobile phase). The resulting clean sample (1.10 g) was subjected to preparative HPLC (solvent A: distilled water, solvent B: acetonitrile. linear gradient 40%B to 55%B in 25 min, 100%B during 5 min, then 40%B for 5 min) that lead to in the isolation of the six new compounds, which were subsequently named sullivantosides A (1; 9.0 mg; Rt = 10.2 min), B (2; 8.1 mg; Rt = 10.8 min), C (3; 10.0 mg; Rt = 11.3 min), D (4; 6.1 mg; Rt = 12.4 min), E (5; 4.0 mg; Rt = 13.1 min), and F (**6**: 4.1 mg; Rt = 14.2 min). The *n*-BuOH extract (22.9 g) was suspended in $H_2O(500 \text{ mL})$ and adsorbed in a MCI gel (500 g) column, washed with H₂O (2 L), and then eluted with H₂O-MeOH mixtures [(10% to 100% MeOH (v/v in H₂O) in 10% step increments (2L each fraction)] to afford a total of 10 fractions (1-10). Fractions *n*-BuOH 6–10 were subjected to Sephadex LH-20 (500 g) column chromatography (100% MeOH elution), followed by silica gel column chromatography [CHCl₃:MeOH 95:5 (v/v) or CHCl₃:MeOH 90:10 (v/v) elution], and finally HPLC chromatography (semipreparative or preparative with CH₃CN-H₂O) elution. Using these separation steps, the common flavonoid rutin was isolated from fraction *n*-BuOH-6; whereas the known lignan 9'-O-butyl-3-Odemethyl-9-0-β-p-glucopyranosyl dehydrodiconiferylalcohol (6 mg) was obtained in conjunction with the known cardiac glycosides 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-6-desoxy- β -D-allopyranosyl uzarigenin (80 mg) and 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl uzarigenin (5 mg), were obtained from the fraction n-BuOH-8.

2.4. Sullivantoside A (1)

Amorphous white powder; mp 141.7-143.0 C; $[\alpha]_D^{25} = 2.8$ (*c* 0.38, MeOH); IR ν_{max} (film) cm ¹: 3389.3 (OH), 1708.7 (C=O), 1644.8 (C=O), 1156.6 (C O); HRESIMS *m*/*z*: 1195.6150 [M+Na]⁺ (1195.6240 calc. for C₅₉H₉₆NaO₂₃) ¹H and ¹³C NMR: see Tables 1–4.

2.5. Sullivantoside B (2)

Amorphous white powder; mp 153.7-154.9 C; $[\alpha]_D^{25}$ = +18 (*c* 0.5, MeOH); IR ν_{max} (film) cm ¹: 3389.7 (OH), 1708.5 (C=O), 1644.6 (C=O), 1156.9 (C O); HRESIMS *m*/*z*: 1181.6076 [M+Na]⁺ (1181.6084 calc. for C₅₈H₉₄NaO₂₃) ¹H and ¹³C NMR: see Tables 1–4.

2.6. Sullivantoside C (3)

Amorphous white powder; mp 158.9-160.0 C; $[\alpha]_D^{25}$ = +15.3 (*c* 0.45, MeOH); IR ν_{max} (film) cm ¹: 3389.3 (OH), 1708.7 (C=O),

Table 1

¹³C NMR (125 MHz, C₅D₅N) data for the aglycone part of sullivantosides A-F (**1-6**).

Atom	1	2	3	4	5	6
1	38.5, CH ₂	38.5, CH ₂	38.4, CH ₂	38.6, CH ₂	38.5, CH ₂	38.6, CH ₂
2	29.9, CH ₂	29.9, CH ₂	29.9, CH ₂	30.0, CH ₂	30.0, CH ₂	29.9, CH
3	76.9, CH	76.9, CH	77.3, CH	77.0, CH	76.9, CH	77.2, CH ₂
4	34.8, CH ₂	34.8, CH ₂	34.8, CH ₂	34.9, CH ₂	34.9, CH ₂	34.9, CH ₂
5	45.6, CH	45.6, CH	45.7, CH	45.8, CH	45.7, CH	45.8, CH
6	25.6, CH ₂	25.6, CH_2	25.7, CH ₂	25.8, CH ₂	25.8, CH ₂	25.9, CH ₂
7	35.8, CH ₂	35.8, CH ₂	35.9, CH ₂	36.1, CH ₂	36.0, CH ₂	36.8, CH ₂
8	76.4, C	76.4, C	76.4, C	76.5, C	76.9, C	76.6, C
9	48.5, CH	48.1, CH	48.2, CH	48.8, CH	48.5, CH	48.8, CH
10	37.0, C					
11	24.1, CH ₂	24.1, CH ₂	24.1, CH ₂	27.9, CH ₂	27.9, CH ₂	28.0, CH ₂
12	78.6, CH	78.6, CH	78.6, CH	75.2, CH	75.2, CH	75.2, CH
13	55.5, C	55.6, C	55.6, C	57.3, C	57.3, C	57.3, C
14	86.4, C	86.7, C	86.7, C	86.8, C	86.8, C	86.8, C
15	36.2, CH ₂	36.2, CH ₂	36.3, CH ₂	36.8, CH ₂	36.8, CH ₂	36.8, CH ₂
16	25.4, CH_2	25.3, CH ₂	25.4, CH_2	25.5, CH ₂	25.5, CH ₂	25.5, CH ₂
17	59.3, CH	59.5, CH	59.5, CH	59.1, CH	59.2, CH	59.0, CH
18	13.4, CH ₃	13.4, CH ₃	13.4, CH ₃	12.4, CH_3	12.4, CH_3	12.4, CH_3
19	13.5, CH_3	13.5, CH ₃	13.6, CH ₃	13.7, CH ₃	13.7, CH ₃	13.7, CH ₃
20	214.9, C	214.9, C	215.0, C	217.4, C	217.3, C	217.4, C
21	32.3, CH ₃	32.3, CH ₃	32.3, CH ₃	32.8, CH ₃	32.8, CH ₃	32.8, CH ₃
	12-Tg	12-Tg	12-Tg			
1	168.1. C	168.1. C	168.2. C			
2	129.7, C	129.7, C	129.7, C			
3	138.1, CH	138.1, CH	138.1, CH			
4	14.7, CH ₃	14.7, CH ₃	14.7, CH ₃			
5	12.7, CH ₃	12.7, CH ₃	12.7, CH ₃			

1644.8 (C=O), 1156.6 (C O); HRESIMS m/z: 1330.7278 [M+Na]⁺ (1330.7285 calc. for C₆₇H₁₁₀NaO₂₆) ¹H and ¹³C NMR see Tables 1–4.

2.7. Sullivantoside D (4)

Amorphous white powder; mp 155.1-157.0 C; $[\alpha]_D^{25} = 1.6 (c 0.1, MeOH)$; IR ν_{max} (film) cm ¹: 3389.3 (OH), 1708.5 (C=O), 1644.5 (C=O), 1156.3 (C O); HRESIMS *m/z*: 1113.5798 [M+Na]⁺ (1113.5821 calc. for C₅₅H₉₂NaO₂₃) ¹H and ¹³C NMR: see Tables 1–4.

2.8. Sullivantoside E (5)

Amorphous white powder; mp 164.7-165.4 C; $[\alpha]_D^{25}$ = +15.5 (*c* 0.2, MeOH); IR ν_{max} (film) cm ¹: 3389.4 (OH), 1708.3 (C=O), 1644.7 (C=O), 1156.8 (C O); HRESIMS *m*/*z*: 1099.5668 [M+Na]⁺ (1099.5665 calc. for C₅₃H₈₈NaO₂₂) ¹H and ¹³C NMR: see Tables 1–4.

2.9. Sullivantoside F (6)

Amorphous white powder; mp 138.9-140.1 C; $[\alpha]_D^{25}$ = +20.3 (c. 0.3, MeOH); IR ν_{max} (film) cm ¹: 3389.2 (OH), 1708.4 (C=O), 1644.9 (C=O), 1156.5 (C-O); HRESIMS *m*/*z*: 1271.6756 [M+Na]⁺ (1271.6764 calc. for C₆₂H₁₀₄NaO₂₅) ¹H and ¹³C NMR: see Tables 1–4.

2.10. Acid hydrolysis of compounds

An aliquot of the fraction CH_2Cl_2 -13 (approx. 100 mg) was hydrolyzed using 3 mL of 1 M HCl (dioxane: H_2O 1:1, v/v) for 4 h at 70 C. The resulting mixture was neutralized with 3 M NaOH and extracted three times with EtOAc. The aqueous layer was concentrated and the residue was fractionated in a small silica gel column using mixtures of CHCl₃, MeOH, and H₂O. The purified sugars were compared by TLC with authentic samples and the optical rotation values recorded in H₂O after equilibration during

Table 2 ^{13}C NMR (125 MHz, C₅D₅N) data for the sugar moiety of sullivantosides A-F (**1-6**).

Atom	1	2	3	4	5	6
	D-Cym	D-Cym	D-Ole	D-Cym	D-Cym	D-Ole
1' 2'	96.3, CH 37.7 CH	96.3, CH 37.7 CH	98.0, CH 38 3 CH	96.2, CH 37.7 CH	96.2, CH 377 CH	97.9, CH 38 3 CH
2 3′	78.4. CH	78.4. CH	79.6. CH	78.4. CH	78.4. CH	79.7. CH
4'	83.8, CH	83.8, CH	83.6, CH	83.8, CH	83.8, CH	83.6, CH
5′	69.3, CH	69.3, CH	72.2, CH	69.4, CH	69.3, CH	72.2, CH
6′	19.0CH ₃	19.0CH ₃	19.1CH ₃	19.0CH ₃	19.0CH ₃	19.1CH ₃
3'-OMe	59.3CH ₃	59.2CH ₃	57.6CH ₃	59.3CH ₃	59.2CH ₃	57.6CH ₃
Atom	1	2	3	4	5	6
	D-Cym	D-Dig	D-Ole	D-Cym	D-Dig	D-Ole
1"	100.9, CH	100.9, CH	100.6, CH	100.9, CH	100.9, CH	100.6, CH
2"	37.4, CH ₂	39.1, CH ₂	38.2, CH ₂	37.4, CH ₂	39.1, CH ₂	38.2, CH ₂
5 4''	78.5, CH	83.5 CH	79.5, CH	78.5, CH	83.5 CH	79.5, CH 83.6, CH
5″	69.2, CH	68.9, CH	71.9, CH	69.4, CH	68.9, CH	72.0, CH
6''	18.9, CH ₃	18.8, CH ₃	19.1, CH ₃	18.9, CH ₃	18.8, CH ₃	19.1, CH ₃
3''-OMe	59.3, CH ₃		57.8, CH ₃	59.3, CH ₃		57.8, CH ₃
Atom	1	2	3	4	5	6
	D-Dig	D-Dig	D-Ole	D-Dig	D-Dig	D-Ole
1′′′	100.9, CH	100.3, CH	100.6, CH	100.8, CH	100.3, CH	100.6, CH
2'''	39.4, CH ₂	39.3, CH ₂	38.2, CH ₂	39.4, CH ₂	39.3, CH ₂	38.2, CH ₂
3''' /'''	67.9, CH 83.6, CH	67.9, CH	79.7, CH	67.9, CH 83.6, CH	67.9, CH	79.7, CH 83.6, CH
4 5'''	68.8 CH	68.8 CH	72.3 CH	68.8 CH	68 9 CH	72.3 CH
6′′′	18.7, CH ₃	18.7, CH ₃	19.2, CH ₃	18.8, CH ₃	18.9, CH ₃	19.2, CH ₃
3///_OMo	,	,,	57.8. CH ₂	, . ,	,	57.8. CH₃
5 -01018			,,			, ,
Atom	1	2	3	4	5	6
Atom	1 D-Ole	2 D-Ole	3 D-Cym	4 D-Ole	5 D-Ole	6 D-Cym
Atom	1 D-Ole 101.8, CH	2 D-Ole 101.8, CH	3 D-Cym 98.9, CH	4 D-Ole 101.8, CH	5 D-Ole 101.8, CH	6 D-Cym 98.9, CH
Atom	1 D-Ole 101.8, CH 37.4, CH ₂	2 D-Ole 101.8, CH 37.6, CH ₂	3 D-Cym 98.9, CH 37.4, CH ₂	4 D-Ole 101.8, CH 37.6, CH ₂	5 D-Ole 101.8, CH 37.6, CH ₂	6 D-Cym 98.9, CH 37.6, CH ₂
Atom	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH
Atom	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69 5, CH
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃ 2	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 4	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 6
Atom 1'''' 2'''' 3'''' 4'''' 6'''' 3''''-OMe Atom	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃ 57.2, CH ₃ D-Glc	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 5 9.2, CH ₃ b -Ole	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃ 5 D-Glc	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 59.2, CH ₃ 6 D-Ole
Atom 1'''' 2'''' 3'''' 4'''' 4'''' 6'''' 3''''-OMe Atom 1'''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃ 5 D-Glc 104.9, CH	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 59.2, CH 6 D-Ole 102.3, CH
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom 1''''' 2'''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 76.1, CH	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃ 5 D-Glc 104.9, CH 76.1, CH	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 6 D-Ole 102.3, CH 37.8, CH ₂
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom 1''''' 2''''' 3'''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH	4 D-Ole 101.8, CH 37.6, CH₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH₃ 57.6, CH₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 79.2, CH ₃ 57.3, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 6 D-Ole 102.3, CH 37.8, CH ₂ 79.3, CH
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3'''' -OMe Atom 1''''' 2''''' 3'''' -OMe	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH	2 D-Ole 101.8, CH 37.6, CH₂ 79.6, CH 83.4, CH 19.2, CH₃ 57.2, CH₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 78.6, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH	4 D-Ole 101.8, CH 37.6, CH₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH₃ 57.6, CH₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.2, CH₃	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 6 D-Ole 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3'''' -OMe Atom 1''''' 3'''' 6'''' 5''''' 6''''' 5'''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 72.4, CH 78.6, CH	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 79.7, CH 83.3, CH 79.2, CH ₂	4 D-Ole 101.8, CH 37.6, CH₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH₃ 57.6, CH₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH₂	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.3, CH 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 78.6, CH 63.4, CH-	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 59.2, CH 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH 79.3, CH 19.2, CH
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe 1''''' 3''''' 4''''' 5''''' 6''''' 3'''''-OMe 6'''''' 6'''''' 3'''''-OMe	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 79.7, CH 83.3, CH 19.2, CH ₃	4 D-Ole 101.8, CH 37.6, CH₂ 79.6, CH 83.5, CH 19.2, CH₃ 57.6, CH₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH₂	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 79.3, CH 19.2, CH ₃ 57.3, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 59.2, CH 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH 79.3, CH 83.3, CH 19.2, CH ₃ 57.6, CH ₃
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom 1''''' 4'''' 5''''' 6''''' 3''''-OMe	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 76.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 5 9.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 83.3, CH 19.2, CH ₃ 57.6, CH ₃	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 5 7.6, CH ₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 6 D-Ole 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH 72.2, CH 19.2, CH ₃ 57.6, CH ₃
Atom 1'''' 2'''' 3''''-OMe Atom 1''''' 3''''-OMe Atom 1''''' 3''''-OMe Atom	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 72.0, CH 19.2, CH ₃ 57.6, CH ₃	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH 19.9, CH ₃ 59.2, CH 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH 72.2, CH 19.2, CH ₃ 57.6, CH ₃ 57.6, CH ₃
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3'''' -OMe Atom 1''''' 3'''' OMe Atom	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 72.3, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 1	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.6, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂ 2 2 2	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 83.4, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 83.3, CH 79.7, CH 83.3, CH 79.2, CH ₃ 57.6, CH ₃ 5 6 D-Ole 1 1 1 1 1 1 1 1 1 1	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 4	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH 19.2, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH 19.9, CH ₃ 59.2, CH 102.3, CH 87.8, CH ₂ 79.3, CH 83.3, CH 79.2, CH 83.3, CH 19.2, CH ₃ 57.6, CH ₃ 57.6, CH ₃
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3'''' OMe Atom 1''''' 3'''' 0''' 3''''' 0'''' 3''''' 0'''' 3''''' 0'''' 1''''' 0'''' 1''''' 1''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂ 1	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 79.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 2	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 83.4, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 79.7, CH 83.3, CH 19.2, CH ₃ 57.6, CH ₃ 5 D-Glc 104.4, CH	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 79.1, CH 79.1, CH 79.1, CH 79.1, CH 79.4, CH 63.4, CH ₂ 4	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH 19.2, CH ₃ 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 79.1, CH 78.6, CH 63.4, CH ₂ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH ₃ 6 D-Ole 102.3, CH 83.3, CH 79.3, CH 83.3, CH 79.2, CH 83.3, CH 19.2, CH ₃ 57.6, CH ₃ 57.6, CH ₃ 57.6, CH ₃
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3'''' -OMe Atom 1''''' 3'''' 0Me Atom 1''''' 2''''' 3'''' 0Me Atom 1''''' 2'''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 1	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 2	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 79.2, CH 83.3, CH 79.2, CH 357.6, CH ₃ 5 D-Ole	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 79.1, CH 79.1, CH 79.1, CH 79.4, CH 63.4, CH ₂ 4	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH 19.9, CH ₃ 59.2, CH 102.3, CH 83.3, CH 79.3, CH 83.3, CH 79.2, CH 19.2, CH ₃ 57.6, CH ₃ 57.6, CH ₃ 6 D-Clc 104.9, CH 76.1, CH 76.1, CH 76.1, CH
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3'''' OMe Atom 1''''' 3'''' 0'''' 3''''' 6''''' 3''''' 6''''' 3''''' 6''''' 3''''' 0'Me Atom 1''''' 2''''' 3'''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 1	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 2	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 19.9, CH ₃ 59.2, CH 19.9, CH ₃ 5 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 79.2, CH 83.3, CH 72.0, CH 19.2, CH 3 D-Ole 102.2, CH 102.2, CH	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 79.1, CH 79.1, CH 79.1, CH 79.4, CH 63.4, CH ₂ 4	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH 19.2, CH 5 D-Glc 104.9, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 63.4, CH ₂ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH 19.9, CH ₃ 59.2, CH 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH 79.2, CH 83.3, CH 79.2, CH 9.2, CH 57.6, CH ₃ 57.6, CH ₃ 57.6, CH 104.9, CH 79.1, CH 79.2, CH
Atom 1'''' 2'''' 3'''' 4'''' 3'''' 6'''' 3'''' Atom 1''''' 3''''' 6''''' 3''''' 6''''' 3''''' 0Me Atom 1'''''' 3'''''' 0Me Atom 1'''''' 3'''''' 3'''''' 3''''''	1 D-Ole 101.8, CH 37.4, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 1 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 1	2 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 19.2, CH ₃ 57.2, CH ₃ 2 D-Glc 104.8, CH 76.1, CH 79.1, CH 79.1, CH 79.4, CH 78.6, CH 63.4, CH ₂ 2	3 D-Cym 98.9, CH 37.4, CH ₂ 78.5, CH 83.4, CH 19.9, CH ₃ 59.2, CH ₃ 3 D-Ole 102.2, CH 37.8, CH ₂ 79.7, CH 83.3, CH 79.7, CH 83.3, CH 72.0, CH 19.2, CH ₃ 5 C-Glc 104.4, CH 76.1, CH 79.1, CH 72.4, CH 78.5, CH	4 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.5, CH 19.2, CH ₃ 57.6, CH ₃ 4 D-Glc 104.8, CH 79.1, CH 79.1, CH 79.1, CH 79.4, CH 63.4, CH ₂ 4	5 D-Ole 101.8, CH 37.6, CH ₂ 79.6, CH 83.4, CH 72.3, CH 19.2, CH ₃ 57.3, CH 19.2, CH 75.3, CH 70.1, CH 76.1, CH 79.1, CH 79.1, CH 72.4, CH 78.6, CH 63.4, CH ₂ 5	6 D-Cym 98.9, CH 37.6, CH ₂ 78.3, CH 83.4, CH 69.5, CH 19.9, CH ₃ 59.2, CH 19.9, CH ₃ 59.2, CH 102.3, CH 37.8, CH ₂ 79.3, CH 83.3, CH 79.3, CH 83.3, CH 79.2, CH 19.2, CH ₃ 57.6, CH ₃ 57.6, CH ₃ 6 D-Clc 104.9, CH 76.1, CH 79.1, CH 78.5, CH

24 h. The mixture of compounds afforded D-glucose $[\alpha]_D^{25} = +50.2$ (c 0.1, H₂O), lit. +56 (Cornelius and Mahmmoud, 2009); D-cymarose $[\alpha]_D^{25} = +50.1$ (c. 0.1, H₂O); lit. +51.6 (Tsukamoto et al., 1986); Doleandrose $[\alpha]_D^{25} = 9.8$ (c. 0.1 H₂O); lit. 10.3 (Nakagawa et al., 1983); and D-digitixose $[\alpha]_D^{25} = +43.3$ (c. 0.1 H₂O); lit. +45 (Abe et al., 1994).

3. Results and discussion

Six new pregnane glycosides were isolated, identified and named sullivantosides A-F. The new compounds belong to a structural class that are common among the plant family Asclepiadaceae representing an important contribution to the chemotaxonomic knowledge of the *Asclepias* genus. The ecological importance of this compound collection remain to be investigated. In addition, two known cardiac glycosides $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 4)$ -6-desoxy- β -D-allopyranosyl uzarigenin (**7**, 80 mg), 3-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - β -D-glucopyranosyl uzarigenin (**8**, 5 mg) as well as the lignan 9'-O-butyl-3-O-demethyl-9-O- β -Dglucopyranosyl dehydrodiconiferylalcohol (**9**, 6 mg) were identified. Interestingly, the occurrence of compounds **7-9** in the "common milkweed" *Asclepias syriaca* were reported by our research group (Araya et al., 2012b) (Fig. 1).

Sullivantoside A (1) was obtained as a white, amorphous powder. The HRESIMS displayed a $[M + Na]^+$ ion at m/z1195.6150 consistent with a molecular formula of C₅₉H₉₆NaO₂₃ (calc. 1195.6240). The ¹H NMR spectrum showed three methylsinglet signals at δ 2.24 (s, Me-21), 1.54 (s, Me-18), and 1.18 (s, Me-19). The HMBC correlations observed of these three methyl groups indicated the presence of a pregn-20-one skeleton, including correlations between proton CH_3 -21 and carbon resonances at δ 214.9 (C-20) and 59.3 (C-17); CH₃-18 and carbon resonances at δ 55.5 (C-12), 78.6 (C-13), 59.3 (C-17), and 86.4 (C-14); as well as CH₃-19 and carbon resonances at δ 38.5 (C-1), 37.0 (C-10), 45.6 (C-5), and 48.5 (C-9) (Fig. 2). This steroidal core was further confirmed by the ¹H,¹H-COSY correlations (Fig. 2). Moreover, in combination with the ¹H,¹H-COSY, HSQC, and HMBC spectra, the partial structure of the aglycone portion was revealed (Tables 1-4, Experimental data). In addition, an isolated spin system based on ¹H. ¹H-COSY corresponding to a tiglate group was determined to be a substitution at C-12 by the observed HMBC correlation between H-12 (δ 5.02, m) and carbonyl resonance of the tigloyl group at δ 168.1. Hence, the planar structure of the aglycone was deduced to be 12-tigloyl-8,14-dihydroy-pregn-20-one, and the NMR data were in good agreement with literature data observed for similar compounds (Kunert et al., 2006; Kunert et al., 2008). Analysis of the ROESY spectrum of 1 revealed the correlations of H-3/H-5, H-5/H9, H9/H-12 and H-12/H-17 (Fig. 3). Therefore, the relative configuration of this aglycone could be deduced as 12-B-tigloyl-8B, 14Bdihydroxy-pregn-20-one. In addition to the signals for the aglycone, five anomeric protons were also observed in the ¹H NMR spectrum at δ 5.35 (dd, *J*=8.2, 1.5, H-1^{'''}), 5.32 (dd, *J*=9.5, 1.7H-1'), 5.14 (d, J=8.0, H-1''''), 5.14 (br d, J=8.0, H-1'') and 4.76 (dd, J=9.8, 1.5, H-1^{''''}) suggesting the presence of equal number of sugars. The attachment of the sugar side chain to C-3 could be deducted from the HMBC correlations from H-1' (δ 5.32, dd, J=9.5, 1.7 Hz) to C-3 (δ 76.9) and H-3 (δ 3.90, m) to C-1' (δ 96.3). Furthermore, the identification of four methyl doublet signals in the in the ¹H NMR spectrum [at δ 1.68 (d, J = 5.3 Hz, H-6''''), 1.44 (d, *J*=6.1 Hz, H-6^{''}), 1.44 (d, *J*=6.1 Hz, H-6[']), and 1.34 (d, *J*=6.3 Hz, H-6''']) as well as three methoxy groups [at δ 3.65 (s, C-3'-OCH₃), 3.65 (s, C-3^{"'}-OCH₃) and 3.54(s, C-3^{""}-OCH₃)], suggested the presence of three 6-deoxy-3-methoxy and one 6-deoxy sugars which commonly occur in Asclepias as previously described (Araya et al., 2012a). Using ¹H,¹H DQFCOSY, ¹H,¹H-TOCSY, and HSQC-TOCSY spectra, the proton spin systems and the carbon resonances allowed for the full assignment of the sugar units (Tables 2 and 4). Comparison of the NMR data with those reported in the literature revealed the identity of the five sugars as two cymaroses, oleandrose, digitoxose, and glucose (Araya et al., 2012a,b; Warashina and Noro, 2003, 2009). The chemical shifts of C-4 of the four 6-deoxysugars were extremely close at δ 83.8 (C-4'), 83.5 (C-4"), 83.6 (C-4""), and 83.5 (C-4"") resulting in the overlap of HMBC correlations. Therefore, the HMBC signal between H-4 of a sugar unit and anomeric carbon from adjacent sugar were used to elucidate the connectivity as follows: cymarosyl anomeric proton H-1' (δ 5.32, dd, *J*=9.5, 1.7 Hz) and aglycone C-3 (δ 76.9);

Table 3		
¹ H NMR (500 MHz, C ₅ D ₅ N) data	for the aglycone part	of sullivantosides A-F (1-6).

	0 /	2 () III 112)	3 () III HZ)	4 (<i>J</i> in Hz)	5 () in Hz)	6 (<i>J</i> in Hz)
1	1.62, m	1.62, m	1.65, m	1.76, m	1.75, m	1.75, m
	0.91, m	0.91, m	0.92, m	0.98, m	0.96, m	0.96, m
2	2.02, m	2.02, m	2.04, m	2.04, m	2.03, m	2.03, m
	1.72, m	1.72, m	1.75, m	1.77, m	1.75, m	1.75, m
3	3.90, m	3.90, m	3.92 m	3.96, m	3.92, m	3.93, m
4	1.76, m	1.75, m	1.82, m	1.83, m	1.77, m	1.77, m
	1.44, m	1.42, m	1.49, m	1.50, m	1.44, m	1.45, m
5	1.00, m	1.00, m	1.05, m	1.05 m	1.01, m	1.01, m
6	1.81, m	1.80, m	1.88, m	1.88, m	1.84, m	1.82, m
	1.10, m	1.10, m	1.18, m	1.20, m	1.12, m	1.11, m
7	2.18, m	2.17, m	2.22, m	2.22, m	2.20, m	2.20, m
	1.41, br dd (10.5, 4.3)	1.40, br dd (10.5, 4.3)	1.42, br dd	1.43, m	1.42, br dd (10.5, 4.3)	1.41, br dd (10.5, 4.3)
9	1.34, m	1.35, br d (12.8)	1.37, m	1.31, br d (13.0)	1.29, m	1.29, br d (12.7)
11	2.18, m	2.17, m	2.20, m	2.33, m	2.31, m	2.32, m
	1.92, m	1.92, m	1.94, m	1.94, m	1.93, m	1.92, m
12	5.02, m	5.01, m	5.03, m	3.74, m	3.72, m	3.74, m
15	2.10, m	2.11, m	2.12, m	2.12, m	2.11, m	2.10, m
	1.98, m	1.98, m	1.99, m	2.00, m	1.98, m	1.98, m
16	2.22, m	2.23, m	2.24, m	2.19, m	2.19, m	2.18, m
	1.99, m	1.92, m	1.94, m	1.97, m	1.96, m	1.96, m
17	3.21, dd (9.2, 5.9)	3.19, dd (9.3, 5.8)	3.21, dd (9.2, 5.8)	3.87, dd (9.3, 5.4)	3.85, dd (9.5, 5.4)	3.85, dd (9.5, 5.4)
18	1.54, s	1.54, s	1.56, s	1.57, s	1.56, s	1.56, s
19	1.18, s	1.18, s	1.21, s	1.24, s	1.21, s	1.21, s
21	2.24, s	2.24, s	2.25, s	2.30, s	2.30, s	2.29, s
	12-An	12-An	12-An			
2						
3	7.14, m	7.14, m	7.14, m			
4	1.72, br d (7.2)	1.72, br d (7.2)	1.73, br d (7.2)			
5	1.98, br s	1.98, br s	1.99, br s			

oleandrosyl proton H-4''' (δ 3.69, m) and glucosyl anomeric carbon C-1^{'''''} (δ 104.8); and digitoxyl proton H-4^{'''} (δ 3.45, dd, *J*=9.5, 2.5 Hz) and oleandrosyl anomeric carbon C-1^{$\prime\prime\prime\prime\prime$} (δ 101.8). As the NMR data suggested, the glucose unit was the fifth and terminal sugar, oleandrose was attached to glucose via $1 \rightarrow 4$ glycosidic linkage, digitoxose was $1\rightarrow 4$ linked to oleandrose and one cymarose unit was directly attached to the aglycone, leaving the connectivity of one cymarose unit to be assigned. It should be noted that the anomeric carbons of the second cymarose C-1" (δ 100.9) unit and digitoxose C-1''' (δ 100.9) were undistinguishable (Table 2), however, knowing the identity of the sugar units led to the following sequence: Glc-Ole-Dig-Cym-Cym-aglycone. In addition, the β -linkages of the five sugars were established by the large coupling constants (I=8.0-9.8 Hz) observed for the anomeric protons. Finally, the optical rotation of the purified monomeric sugars after acid hydrolysis established the absolute configuration D for all the sugars present in this compound (see Experimental Section). Therefore, the structure of 1 was determined to be 12-0tygloyl-3β, 8β, 12β,14β-tetrahydroxypregn-20-one-3-O-β-D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-oleandropyranosyl- $(1 \rightarrow 4)$ - β -D-digitoxypyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranose, and named sullivantoside A.

Sullivantoside B (**2**) was obtained as a white, amorphous powder. The HRESIMS displayed a $[M+Na]^+$ ion at m/z1181.6076 consistent with the molecular formula $C_{58}H_{94}NaO_{23}$ (calc. 1181.6084). Analysis of the ¹H and ¹³C NMR data permitted the identification of the same aglycone as in **1** (*vide supra*). In addition, five sugars were identified to be present in the structure on the basis of the five anomeric protons observed at δ 5.41 (dd, J=9.6, 1.6, H-1'''), 5.35 (dd, J=9.5, 1.6, H-1''), 5.33 (br d, J=9.5, 1.6, H-1''), 5.14 (d, J=7.8, H-1'''') and 4.74 (dd, J=9.7, 1.6, H-1'''). Sugar signals in the ¹H and ¹³C NMR spectra were assigned using 2D NMR spectra and the identity of these five sugars were determined to be two digitoxoses, and single units of cymarose, oleandrose, and glucose. As previously described for **1**, the connectivity of the

sugars was achieved through the HMBC correlations between cymarosyl anomeric proton H-1' (δ 5.33, dd, J=9.5, 1.6) and C-3 (δ 76.9), cymarosyl proton H-4" (δ 3.56, dd, I = 9.6, 2.7) and digitoxyl-1 anomeric carbon C-1" (δ 100.9), digitoxyl-1 proton H-4" (3.50, dd, J=9.6, 2.5) and digitoxyl-2 anomeric carbon C-1^{'''} (δ 100.3), digitoxyl-2 proton H-4^{$\prime\prime\prime$} (δ 3.43, dd, J=9.6, 2.5) and oleandrosyl anomeric carbon C-1^{''''} (101.8), as well as oleandrosyl proton H-4^{''''} (δ 3.67, m) and glucosyl anomeric carbon C-1^{'''''} (δ 104.8). These data showed that glucose unit was the terminal sugar, oleandrose was attached to glucose via $1 \rightarrow 4$ glycosidic linkage, digitoxose was $1 \rightarrow 4$ linked to oleandrose, and cymarose was directly attached to the aglycone. As described previously, although the HMBC correlations were severely overlapped, knowing the identity of the sugar units, the position of the second digitoxose unit must be placed between the cymarose and previously assigned digitoxose units. Consequently, the structure of **2** was proposed to be 12-0tvglovl-3B.8B.12B.14B-tetrahvdroxvpregn-20-one-3-O-B-p-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-oleandropyranosyl- $(1 \rightarrow 4)$ - β -D-digitoxypyranosyl- $(1 \rightarrow 4)$ - β -D-digitoxypyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside.

Sullivantoside C (**3**) was obtained as a white, amorphous powder. The HRESIMS displayed a $[M+Na]^+$ ion at m/z 1330.7278 consistent with the molecular formula $C_{60}H_{98}NaO_{23}$ (calc. 1330.7285). The ¹H and ¹³C NMR signals of **3** were almost superimposable to those of **1**, thus it was concluded that both structures shared the same 12-O-tygloyl-3 β ,8 β ,12 β ,14 β -tetrahydroxypregn-20-one steroidal skeleton. The ¹H and ¹³C NMR data of the aglycone was assigned using 2D NMR spectra (Tables 1 and 2). Different to the five sugars unit of compounds **1** and **2**, six anomeric protons were observed in the ¹H NMR spectrum of **3** at δ 5.30 (dd, J=9.7, 1.6, H-1^{'''}), 5.16 (d, J=7.8, H-1^{'''''}), 4.93 (dd, J=9.8, 1.6, H-1^{'''}), 4.91 (dd, J=9.8, 1.6, H-1^{''''}). This side chain of six sugars was determined as one cymarose, four oleandroses, and one glucose by data analysis of ¹H and ¹³C NMR, ¹H, ¹H-DQFCOSY, ¹H, ¹H-TOCSY, and

Table 4
H NMR (500 MHz, C ₅ D ₅ N) data for the sugar moiety of sullivantosides A-F (1-6).

Atom	1 (J in Hz) D-Cym	2 (J in Hz) D-Cym	3 (J in Hz) D-Ole	4 (<i>J</i> in Hz) D-Cym	5 (J in Hz) D-Cym	6 (J in Hz) D-Ole
1′	5.32. dd (9.5. 1.7)	5.33. dd (9.5. 1.6)	4.88. dd (9.7. 1.5)	5.34. dd (9.5. 1.7)	5.34. dd (9.5. 1.6)	4.90. dd (9.7. 1.7)
2′	2.34, m	2.34, m	2.50, m	2.36, m	2.35, m	2.51, m
	1.92, m	1.92, m	1.84, m	1.92, m	1.94, m	1.80, m
3′	4.11, m	4.13, m	3.63, m	4.10, m	4.13, m	3.63, m
4'	3.54, dd (9.5, 2.8)	3.56, dd (9.6, 2.7)	3.54, m	3.47, dd (9.5, 2.8)	3.56, dd (9.6, 2.7)	3.54, m
5'	4.28, m	4.28, dq (9.6, 6.3)	3.63, m	4.28, dq (9.5, 6.1)	4.30, dq (9.6, 6.3)	3.62, m
6' 2/ OM/a	1.44, d (6.1)	1.42, d (6.3)	1.53, d (5.4)	1.44, d (6.1)	1.42, d (6.3)	1.48, d (5.4)
3 -OME	3.03, 8	3.05, 8	3.34, 8	3.00, 8	3.00, 5	3.34, 5
Atom	1 (<i>J</i> in Hz)	2 (<i>J</i> in Hz)	3 (<i>J</i> in Hz)	4 (<i>J</i> in Hz)	5 (J in Hz)	6 (<i>J</i> in Hz)
	D-Cylli	D-Dig	D-Ole	D-Cylli	D-Dig	D-Ole
1''	5.14, br d (8.0)	5.35, dd (9.5, 1.6)	4.93, dd (9.8, 1.6)	5.15, br d (9.5)	5.36, dd (9.5, 1.6)	4.93, dd (9.8, 1.7)
2''	2.35, m	2.43, m	2.52, m	2.36, m	2.43, m	2.52, m
2//	1.87, m	1.98, m	1.80, m	1.87, m	2.01, m	1.81, m
3''	4.10, m 2.50, m	4.65, m 2.50 dd (0.6, 2.5)	3.64, m 2.54, m	4.10, m	4.67, m 2.52 dd (0.6, 2.5)	3.60, m
4 5//	419 da (92 61)	4.28 dg (96.63)	3.54, III 3.64 m	419 da (98, 63)	430 da (96.63)	3.62 m
5 6''	144 d (61)	138 d (63)	146 d (54)	144 d (61)	139 d (63)	146 d (54)
3''-OMe	3.65, s	1.50, 4 (0.5)	3.58, s	3.68, s	1.55, 4 (0.5)	3.58, s
A +	1 (<i>L</i> '	2 (<i>L</i> = 11-)	2(1:-11-)			c (Lin H=)
Atom	I(J IN HZ) D-Dig	2(J IN HZ) D-Dig	J(J IN HZ) D-Ole	4 (J IN HZ) D-Dig	5 (J IN HZ) D-Dig	b (J IN HZ) D-Ole
1///	5 35 dd (9 2 1 5)	5 /1 dd (0.6, 1.6)	101 dd (0 9 1 F)	5 35 dd (0 5 1 5)	5 40 dd (0.6.1.6)	(71 90) dd (0 9 17)
1	2.35, uu (8.2, 1.5) 2.42 m	2.41, uu (9.0, 1.0)	4.91, dd (9.8, 1.0) 2.52 m	2.43 m	2.40, dd (9.0, 1.0)	4.95, uu (9.8, 1.7) 2.52 m
2	199 m	198 m	1.80 m	197 m	2.45, m 2.01 m	181 m
3‴	4.62. m	4.66. m	3.63. m	4.63. m	4.62, m	3.60. m
4'''	3.45, dd (9.5, 2.5)	3.43, dd (9.6, 2.5)	3.54, m	3.50, dd (9.8, 2.5)	3.44, dd (9.6, 2.5)	3.55, m
5′′′	4.30, dq (9.5, 6.3)	4.32, dq (9.6, 6.3)	3.64, m	4.30, dq (9.8, 6.3)	4.30, dq (9.6, 6.3)	3.62, m
6'''	1.34, d (6.3)	1.39, d (6.3)	1.47, d (5.4)	1.34, d (6.3)	1.40, d (6.3)	1.46, d (5.4)
3'''-0Me			3.58, s			3.58, s
Atom	1 (<i>J</i> in Hz)	2 (<i>J</i> in Hz)	3 (<i>J</i> in Hz)	4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz)	6 (<i>J</i> in Hz)
Atom	1 (J in Hz) D-Ole	2 (<i>J</i> in Hz) D-Ole	3 (J in Hz) D-Cym	4 (J in Hz) D-Ole	5 (<i>J</i> in Hz) D-Ole	6 (<i>J</i> in Hz) D-Cym
Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5)	2 (J in Hz) D-Ole 4.74, dd (9.7, 1.6)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5)	5 (J in Hz) D-Ole 4.75, dd (9.7, 1.6)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6)
Atom 1'''' 2''''	1 (J in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m	2 (J in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m	4 (J in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m	6 (J in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m
Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m	4 (J in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m
Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m	4 (J in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 2.79, m	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m
Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m	4 (J in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 2.67, m	6 (J in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m
Atom 1'''' 2'''' 3'''' 4'''' 5''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6, 2)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.2)
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54 s	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58 s	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4)	5 (J in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55 s	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59 s
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) -	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4)	5 (J in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s
Atom 1'''' 2'''' 3'''' 5'''' 6'''' 3''''-OMe Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz)
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - - 1 (<i>J</i> in Hz) D-Glc	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom 1'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5)
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom 1''''' 2'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m
Atom 1'''' 2'''' 3'''' 4'''' 5'''' 6'''' 3''''-OMe Atom 1''''' 2'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4 .71, dd (9.7, 1.5) 2.51, m 1.75, m
Atom 1'''' 2'''' 3'''' 6'''' 6'''' 3''''-OMe Atom 1''''' 3'''' 3''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m
Atom 1'''' 2'''' 3'''' 6'''' 6'''' 3''''-OMe Atom 1''''' 3'''' 3'''' 4''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m
Atom 1'''' 2'''' 3'''' 6'''' 6'''' 6'''' 3''''-OMe Atom 1''''' 2''''' 3''''' 3''''' 4''''' 5'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 3.67, m 3.75, m 3.63, m
Atom 1'''' 2'''' 3'''' 6'''' 6'''' Atom 1''''' 2''''' 3''''' 4''''' 5''''' 6'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.28, dd (11.4, 2.1)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3)
Atom 1'''' 2'''' 3'''' 6'''' 3''''-OMe Atom 1''''' 3''''' 4''''' 3''''' 3'''''-OMe	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3) 3.54, s	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s
Atom 1'''' 2'''' 3'''' 6'''' 6'''' 3''''-OMe Atom 1''''' 3'''' 6'''' 3'''' 3'''' 6'''' 3''''-OMe	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.64, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2)	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m 3.68, m 1.75, d (5.3) 3.54, s	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2)	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s
Atom 1'''' 2'''' 3'''' 6'''' 3''''-OMe Atom 1''''' 3'''' 6'''' 3''''-OMe Atom	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 3 (<i>D</i> -D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 6 D	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Glc
Atom 1'''' 2'''' 3'''' 6'''' 3''''-OMe Atom 1''''' 3''''-OMe Atom 1'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 2 (<i>J</i> in Hz) 5.1	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc 6, d (7.8)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 6 D- 5.5	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Glc 16, d (7.8)
Atom 1'''' 2'''' 3'''' 5'''' 6'''' 3''''-OMe Atom 1''''' 3''''-OMe Atom 1''''' 2'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 3 (D 5.14, d (7.8) 4.03, m 5 (1.2, 2.7) 4.38, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 5 (<i>J</i> in H	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m 3.66, m 3.75, m 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc 6, d (7.8) 94, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Clc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 6 D 5. 4.	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Clc (<i>J</i> in Hz) -Clc
Atom 1'''' 2'''' 3'''' 6'''' 3''''-OMe Atom 1''''' 3'''' 6'''' 3''''-OMe Atom 1''''' 3''''-OMe Atom 1''''' 3''''' 6'''' 3''''' 6'''' 3''''' 3''''' 3''''' 3''''' 3''''' 3'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7] 4.38, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 3 (D-Hz) 5.1 4.0 4.0 4.0 5.1 4.0 4.0 5.1	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc 6, d (7.8) ¹ / ₄ , m ¹ / ₅ , m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.38, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 6 D D-5 4.57, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 4.7) 4.58, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 4.7) 4.58, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 4.57, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 5 (<i>J</i> in	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Clc (<i>J</i> in Hz) -Clc (<i>J</i> in Hz) -Clc (<i>J</i> in Hz) -Clc
Atom 1'''' 2'''' 3'''' 6'''' 6'''' 3'''' OMe Atom 1''''' 3'''' 6'''' 3'''' 6'''' 3'''' 6'''' 3'''' 6'''' 3'''' 6'''' 4''''' 6''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3) 1 (<i>J</i> in Hz)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7] 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 3 (<i>D</i>) 5.1 4.0 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc 6, d (7.8) 14, m 25, m	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 6 D 5.44, 4 4.44, 4	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Glc (<i>J</i> in Hz) -Glc
Atom 1'''' 2'''' 3'''' 6'''' 6'''' 3''''-OMe Atom 1''''' 3'''' 6'''' 3''''-OMe Atom 1''''' 5''''' 3''''-OMe Atom 1''''' 5''''' 5''''' 5''''' 5''''' 5''''' 5''''' 5''''' 5''''' 5''''' 5''''' 5'''''	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3) 1 (<i>J</i> in Hz)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.57, dd (11.2, 2.7) 4.57, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 2 (<i>J</i> in Hz) 3 (<i>D</i> -Hz) 5.1 4.20 2 (<i>J</i> in Hz) 3 (<i>D</i> -Hz) 3 (<i>D</i> -H	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m) 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc 6, d (7.8) 14, m 55, m 55, m 44, m 9, ddd (9.8, 5.4, 2.1)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 6 D- 5.4 4.4 3.6 5 (<i>J</i> in Hz) 6 D- 5.5	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Glc (<i>J</i> in Hz) -Glc 16, d (7.8) 04, m 25, m 24, m 99, ddd (9.8, 5.4, 2.1)
Atom 1////2////2///2///2///2///2///2///2///2	1 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, m 1.66, m 3.64, m 3.69, m 3.67, m 1.68, d (5.3) - 1 (<i>J</i> in Hz) D-Glc 5.14, d (8.0) 4.04, m 4.25, m 4.24, m 3.99, ddd (9.7, 5.3, 2.1) 4.56, dd (11.4, 2.1) 4.38, dd (11.4, 5.3) 1 (<i>J</i> in Hz)	2 (<i>J</i> in Hz) D-Ole 4.74, dd (9.7, 1.6) 2.45, m 1.63, m 3.54, m 3.67, m 3.65, m 1.66, d (5.8) 3.54, s 2 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.03, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 2 (<i>J</i> in Hz) 2 (<i>J</i> in Hz) 5.1 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5.1 4.53, dd (11.2, 5.2) 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	3 (<i>J</i> in Hz) D-Cym 5.30, dd (9.7, 1.6) 2.32, m 1.82, m 4.05, m 3.45, m 4.22, m 1.41, d (6.3) 3.58, s 3 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.6) 2.50, m 1.75, m 3.66, m 3.75, m 3.68, m 1.75, d (5.3) 3.54, s <i>J</i> in Hz) Glc 6, d (7.8) 94, m 25, m 25, m 26, dd (9.8, 5.4, 2.1) 36, dd (11.4, 2.1)	4 (<i>J</i> in Hz) D-Ole 4.76, dd (9.8, 1.5) 2.48, ddd (12.5, 5.1, 1.6) 1.66, m 3.64, m 3.70, m 3.68, m 1.69, d (5.4) 4 (<i>J</i> in Hz) D-Glc 5.16, d (8.0) 4.06, dd (8.3, 7.9) 4.24, m 4.25, m 3.99, ddd (9.8, 5.4, 2.1) 4.57, dd (11.4, 2.1) 4.40, dd (11.4, 5.4) 4 (<i>J</i> in Hz)	5 (<i>J</i> in Hz) D-Ole 4.75, dd (9.7, 1.6) 2.47, m 1.65, m 3.64, m 3.68, m 3.67, m 1.67, d (5.8) 3.55, s 5 (<i>J</i> in Hz) D-Glc 5.14, d (7.8) 4.01, m 4.25, m 4.24, m 3.98, ddd (9.8, 5.2, 2.7) 4.57, dd (11.2, 2.7) 4.38, dd (11.2, 5.2) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 5 (<i>J</i> in Hz) 6 D- 5.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	6 (<i>J</i> in Hz) D-Cym 5.31, dd (9.5, 1.6) 2.34, m 1.83, m 4.06, m 3.50, m 4.22, m 1.41, d (6.3) 3.59, s 6 (<i>J</i> in Hz) D-Ole 4.71, dd (9.7, 1.5) 2.51, m 1.75, m 3.67, m 3.75, m 3.63, m 1.53, d (5.3) 3.54, s (<i>J</i> in Hz) -Clc 16, d (7.8) 04, m 25, m 25, m 24, m 99, ddd (9.8, 5.4, 2.1) 57, dd (11.4, 2.1)

HSQC-TOCSY spectra (Tables 2 and 4). The carbon-4 resonances of the five sugar units in the ¹³C NMR spectrum collapsed very close to each other at δ 83.6 (C-4'), 83.6 (C-4"), 83.6 (C-4"), 83.4 (C-4"''), and 83.3 (C-4"'') making any HMBC correlation for these carbons inconclusive. Nonetheless, it was still possible to determine the sequence of the sugars by other key HMBC correlations: between

olandrosyl anomeric proton H-1' (δ 4.88) and carbon C-3 (δ 77.3) of the aglycone, the olandrosyl proton H-4''''' (δ 3.66, m) and the glucosyl anomeric carbon C-1'''''' (δ 104.4), cymarosyl proton H-4'''' (δ 4.05, m) and the oleandrosyl anomeric carbon C-1''''' (δ 102.2), leaving two oleandrose units to be assigned in positions 2 and 3 of the sugar moiety. In fact, the NMR data of oleandrose-

Fig. 1. Structures of compounds 1-6.

2 and oleandrose-3 units are virtually undistinguishable between one another (Tables 2 and 4). Hence, the sugar sequence was then established as Glc-Ole-Cym-Ole-Ole-Ole-aglycone. Therefore, the structure of **3** was determined to be 12-O-tygloyl-3 β ,8 β ,12 β ,14 β -tetrahydroxypregn-20-one-3-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-ole-andropyranosyl-(1 \rightarrow 4)- β -

Sullivantoside D (**4**), an amorphous white powder, displayed an HRMS $[M+Na]^+$ ion at m/z 1113.5798 consistent with the molecular formula $C_{54}H_{90}NaO_{22}$ (calc. 1113.5821). Although the ¹H and ¹³C NMR signals of **4** were similar to those of **1**, the most noticeable difference was the absence of signals for the tiglate group at C-12. Instead of the signals of δ 78.6 (C-12), δ 55.5 (C-13), and δ 86.4 (C-11) as well as the proton signal at δ 5.02 (m, H-12) in **1**, the carbon

signals at δ 75.2 (C-12), 57.3 (C-13), and 27.9 (C-11) as well as the proton signal at 3.71 (m, H-12) were observed with significant shift in **4**. Aided by 2D NMR spectra, the structure of the aglycone was elucidated as $3\beta_8\beta_{,12}\beta_{,14}\beta_{-tetrahydroxypregn-20-one.$ In addition, five anomeric protons were identified in the ¹H NMR spectrum at δ 5.35 (dd, J=9.5, 1.5, H-1^{'''}), 5.35 (dd, J=9.5, 1.5H-1^{''}), 5.16 (d, J=8.0, H-1^{'''''}), 5.15 (br d, J=9.5, H-1^{''}) and 4.76 (dd, J=9.8, 1.5, H-1^{''''}). After assignment of the ¹H and ¹³C NMR of each sugar unit using 2D NMR spectra, the sugar moiety in **4** was determined to be the same as in **1** since the chemical shifts were superimposable. Therefore, the structure of **4** was determined to be $3\beta_8\beta_{,12}\beta_{,14}\beta_{-tetrahydroxypregn-20-one-3-O-\beta_{-D}-glucopyranosyl-(1→4)-\beta_{-D}-oleandropyranosyl-(1→4)-\beta_{-D}-digitoxypyranosyl-(1→4)-\beta_{-D}-cymaropyranosyl-(1→4)-\beta$

Fig. 2. Selected HMBC and ${}^{1}H,{}^{1}H$ -COSY correlations observed for sullivantoside A (1).

Sullivantoside E (**5**), an amorphous white powder with a HRESIMS $[M+Na]^+$ ion at m/z 1199.5668 consistent with the molecular formula $C_{53}H_{88}NaO_{22}$ (calc. 1099.5665) was also found to have the same aglycone as that of compound **4** and the same sugar moiety as that of compound **2** by NMR data comparison. Consequently, compound **5** was determined to be $3\beta_8\beta_8,12\beta_14\beta_1$ tetrahydroxypregn-20-one-3-O- β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-oligatioxypyranosyl-(1 \rightarrow 4)- β -D-digitoxypyranosyl-(1 \rightarrow 4)- β -D-digitoxypyranosyl-(1 \rightarrow 4)- β -D-digitoxypyranosyl-(1 \rightarrow 4)- β -D-cymaropyranoside.

Finally, sullivantoside F (**6**) was obtained as a white, amorphous powder. The HRESIMS displayed a $[M+Na]^+$ ion at m/z 1271.6756 consistent with the molecular formula $C_{55}H_{92}NaO_{22}$ (calc. 1271.6764). The aglycone was identified as the same as in **4** by comparison of the assigned ¹H and ¹³C NMR data. Furthermore, the six sugars present in this compound were identical to those described for compound **3**. Hence, the identity of **6** was determined as $3\beta_8\beta_{12}\beta_{14}\beta_{-tetrahydroxypregn-20-one-3-O-\beta-D-glucopyranosyl-(1<math>\rightarrow$ 4)- β -D-oleandropyranosyl-(1 \rightarrow

 $(1\rightarrow 4)$ - β -D-oleandropyranose.

Supporting information

¹H NMR and ¹³C NMR spectra of compounds **1–6**.

Acknowledgments

This study was supported by grant IND0061464 (awarded to B. N.T and K.K.) from the Kansas Bioscience Authority (KBA) and Center for Heartland Plant Innovations (HPI). The authors thank Q. Long, H. Loring, and M. Ferreira, botanists who worked at the University of Kansas for their assistance in plant collections and identifications. J.J.A. thanks the LASPAU-Fulbright program and the University of Costa Rica for financial support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j. phytol.2016.04.011.

References

- Abe, F., Mohri, Y., Okabe, H., Yamauchi, T., 1994. Steroidal constituents from the roots and stems of Asclepius fruiticosa. Chem. Pharm. Bull. 42, 1777–1783.
- Araya, J.J., Binns, F., Kindscher, K., Timmermann, B.N., 2012a. Verticillosides A-M: polyoxygenated pregnane glycosides from Ascelpias verticillata L. Phytochemistry 78, 179–189.
- Araya, J.J., Kindscher, K., Timmermann, B.N., 2012b. Cardiac glycosides and other compounds from Asclepias syriaca. J. Nat. Prod. 75, 400–407.
- Cornelius, F., Mahmmoud, Y.A., 2009. Interaction between cardiotonic steroids and Na: K-ATPase. Effects of pH and ouabain-induced changes in enzyme conformation. Biochemistry 48, 10056–10065.
- Kindscher, K., 1987. Edible Wild Plants of the Prairie: An Ethnobotanical Guide. University Press of Kansas, Lawrence, Kansas.
- Kindscher, K., 1992. Medicinal Wild Plants of the Prairie: an Ethnobotanical Guide. University Press of Kansas, Lawrence.
- Kunert, O., Rao, B.V.A., Babu, G.S., Padmavathi, M., Kumar, B.R., Alex, R.M., Schuhly, W., Simic, N., Kuhnelt, D., Rao, A., 2006. Novel steroidal glycosides from two Indian *Caralluma* species: *C. stalagmifera* and *C. indica*. Helv. Chim. Acta 89, 201– 209.
- Kunert, O., Rao, V.G., Babu, G.S., Sujatha, P., Sivagamy, M., Anuradha, S., Rao, B.V.A., Kumar, B.R., Alex, R.M., Schuhly, W., Kuhnelt, D., Rao, G.V., Rao, A., 2008. Pregnane glycosides from *Caralluma adscendens* var. *fimbriata*. Chem. Biodivers. 5, 239–250.
- Nakagawa, T., Hayashi, K., Wada, K., Mitsuhashi, H., 1983. Studies on the constituents of Asclepiadaceae plants. 52. The structures of 5 glycosides glaucoside-a glaucoside-b, glaucoside-c, glaucoside-d, and glaucoside e from the Chinese drug Pai-Chien Cynanchum glaucescens Hand-Mazz. Tetrahedron 39, 607–612.
- Tsukamoto, S., Hayashi, K., Kaneko, K., Mitsuhashi, H., 1986. Studies on the constituents of Asclepiadaceae plants. 65. The optical resolution of D-cymaroses and L-cymaroses. Chem. Pharm. Bull. (Tokyo) 34, 3130–3134.
- United States Department of Agriculture (USDA), 2015. Plants Database. . (accesed 11.01.15) http://plants.usda.gov/.
- Warashina, T., Noro, T., 2003. Cardenolides from Asclepias syriaca L. Nat. Med. 57, 185–188.
- Warashina, T., Noro, T., 2009. Acylated-oxypregnane glycosides from the roots of Asclepias syriaca. Chem. Pharm. Bull. (Tokyo) 57, 177–184.