Withanolides and Sucrose Esters from Physalis neomexicana

Cong-Mei Cao, ${ }^{\dagger}$ Xiaoqing Wu, ${ }^{\ddagger}$ Kelly Kindscher, ${ }^{\S}$ Liang Xu, ${ }^{\ddagger}$ and Barbara N. Timmermann ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Medicinal Chemistry and ${ }^{\ddagger}$ Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
${ }^{\S}$ Kansas Biological Survey, University of Kansas, Lawrence, Kansas 66047, United States

S Supporting Information

Abstract

Four withanolides (1-4) and two sucrose esters $(5,6)$ were isolated from the aerial parts of Physalis neomexicana. The structures of $\mathbf{1 - 6}$ were elucidated through a variety of spectroscopic techniques. Cytotoxicity studies of the isolates revealed that 2 inhibited human breast cancer cell lines (MDA-MB-231 and MCF-7) with IC_{50} values of 1.7 and $6.3 \mu \mathrm{M}$, respectively.

Withanolides are a group of modified C_{28} ergostanetype steroids with a C-22, C-26 δ-lactone side chain. These steroids are observed predominantly in members of the Solanaceae, which include the Datura, Jaborosa, Nicandra, Physalis, Salpichroa, and Withania genera. Previous studies have demonstrated that the Physalis genus is an abundant source of withanolides, ${ }^{1}$ from which our group reported the isolation of a series of such compounds from P. coztomatl, ${ }^{2} P$. hispida, ${ }^{3}$ and P. longifolia. ${ }^{4}$ In continuing this work, we examined P. neomexicana Rydb., an annual species endemic to the United States including the states of Colorado, New Mexico, Arizona, and Texas. The fruit, more commonly referred to as the New Mexico groundcherry, was used as food by the Acoma, Chiricahua, Laguna, Mescalero, San Felipe, and Rio Grande pueblos of New Mexico. ${ }^{5,6}$ The fruits were eaten raw, boiled, and used to make a green sauce. ${ }^{7}$ We initiated the first phytochemical investigation of this edible species. This study resulted in the isolation and identification of four new withanolides (1-4), three sucrose esters (5-7), and a known labdane terpenoid. The cytotoxicity of the isolates ($1-7$) against two human breast cancer cell lines (MDA-MB-231 and MCF-7) was also investigated.

RESULTS AND DISCUSSION

Compound $\mathbf{1}$ was isolated as an amorphous solid with a $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{9}$ molecular formula, which was determined based on the

HRESIMS and NMR data (Table 1). The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HSQC spectra of 1 revealed the presence of six methyls [$\delta_{\mathrm{H}} 0.95(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 16.4 ; \delta_{\mathrm{H}} 1.29(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 20.8 ; \delta_{\mathrm{H}} 1.41(3 \mathrm{H}$, s), $\delta_{\mathrm{C}} 17.9 ; \delta_{\mathrm{H}} 1.88(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 12.7$; $\delta_{\mathrm{H}} 1.95(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 20.9 ; \delta_{\mathrm{H}}$ $1.99(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 21.2$], four methylenes $\left[\delta_{\mathrm{H}} 2.05(1 \mathrm{H}, \mathrm{m}), 1.45\right.$ $(1 \mathrm{H}, \mathrm{m}), \delta_{\mathrm{C}} 30.0 ; \delta_{\mathrm{H}} 1.89(1 \mathrm{H}, \mathrm{m}), 1.42(1 \mathrm{H}, \mathrm{m}), \delta_{\mathrm{C}} 22.1 ; \delta_{\mathrm{H}} 1.94$ $(1 \mathrm{H}, \mathrm{m}), 1.43(1 \mathrm{H}, \mathrm{m}), \delta_{\mathrm{C}} 40.2 ; \delta_{\mathrm{H}} 2.51(1 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{dd}$, $J=17.0,3.1 \mathrm{~Hz}), \delta_{\mathrm{C}} 31.1$], 11 methines [including two olefinic at $\delta_{\mathrm{H}} 6.19(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), \delta_{\mathrm{C}} 132.1 ; \delta_{\mathrm{H}} 6.93(1 \mathrm{H}, \mathrm{ddd}, J=10.0$, $5.8 \mathrm{~Hz}), \delta_{\mathrm{C}} 142.2$ and five oxygenated at $\delta_{\mathrm{H}} 3.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}), \delta_{\mathrm{C}}$ $62.8 ; \delta_{\mathrm{H}} 3.76(1 \mathrm{H}, \mathrm{dd}, J=5.7,1.9 \mathrm{~Hz}), \delta_{\mathrm{C}} 69.8 ; \delta_{\mathrm{H}} 4.13(1 \mathrm{H}, \mathrm{dd}$, $J=13.3,3.5 \mathrm{~Hz}), \delta_{\mathrm{C}} 80.4 ; \delta_{\mathrm{H}} 5.16(1 \mathrm{H}, \mathrm{dd}, J=11.4,7.8 \mathrm{~Hz}), \delta_{\mathrm{C}}$ $\left.71.6 ; \delta_{\mathrm{H}} 5.60(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), \delta_{\mathrm{C}} 71.7\right]$, and nine quaternary carbons [including three carbonyl ($\delta_{\mathrm{C}} 202.3,169.8$, and 165.8), two olefins ($\delta_{\mathrm{C}} 148.9$ and 122.3)], which corresponds to $\mathrm{C}_{30} \mathrm{H}_{37}$ with five degrees of unsaturation. Therefore, the three remaining hydrogen atoms were assigned as three hydroxy groups, which indicated a six-ringed structure in $\mathbf{1}$.

The NMR data of 1 exhibited similarities to withanolide $D(8)$, a known withanolide previously isolated from Acnistus arborescens. ${ }^{8}$ Through ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC experiments, compound 1 was found to contain three identical features also observed in 8: (1) an α, β-unsaturated carbonyl [$\delta_{\mathrm{H}} 6.19(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, \mathrm{H}-2), 6.93$ (dd, $J=10.0,5.8 \mathrm{~Hz}, \mathrm{H}-3) ; \delta_{\mathrm{C}} 202.3(\mathrm{C}-1)$, 132.1 (C-2), 142.2 (C-3)] functionality in ring A ; (2) a $5 \beta, 6 \beta$ epoxide $\left[\delta_{\mathrm{H}} 3.21\right.$ (br s, H-6); $\delta_{\mathrm{C}} 63.6$ (C-5), 62.8 (C-6)] moiety in ring B ; and (3) a nine-carbon side chain with a hydroxy group at C-20 $\left[\delta_{\mathrm{C}} 74.7(\mathrm{C}-20), 20.8(\mathrm{C}-21) ; \delta_{\mathrm{H}} 1.29(\mathrm{~s}, \mathrm{Me}-21)\right]$ and an α, β-unsaturated- δ-lactone system $\left[\delta_{\mathrm{C}} 80.4\right.$ ($\mathrm{C}-22$), 31.1 (C-23), 148.9 (C-24), 122.3 (C-25), 165.8 (C-26);

[^0]Published: October 8, 2015

Table 1. ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{1} \mathrm{H}$ NMR (500 MHz) Data of Withanolides $1-4 \mathrm{in} \mathrm{CDCl}_{3}$

	1			2			3			4		
position	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(J\right.$ in $\left.\mathrm{H}_{\mathrm{Z}}\right)$	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(J\right.$ in $\left.\mathrm{H}_{\mathrm{Z}}\right)$	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(\mathrm{J}\right.$ in $\left.\mathrm{H}_{\mathrm{z}}\right)$	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(\mathrm{J}\right.$ in $\left.\mathrm{H}_{\mathrm{Z}}\right)$
1	202.3	C		203.9	C		204.6	C		204.5	C	
2	132.1	CH	6.19 d (10.0)	128.9	CH	5.96 dd (10.0, 2.5)	129.0	CH	5.88 dd (10.2, 2.4)	129.0	CH	5.89 dd (10.1, 2.4)
3	142.2	CH	$\begin{aligned} & 6.93 \mathrm{dd}(10.0, \\ & 5.8) \end{aligned}$	145.2	CH	$\begin{aligned} & 6.83 \text { ddd }(10.0,6.1, \\ & 2.3) \end{aligned}$	141.5	CH	$\begin{aligned} & 6.61 \text { ddd }(10.2,5.0, \\ & 2.2) \end{aligned}$	141.3	CH	$\begin{aligned} & 6.62 \text { ddd }(10.1, \\ & 5.0,2.2) \end{aligned}$
4	69.8	CH	$\begin{aligned} & 3.76 \text { dd (} 5.7, \\ & 1.9) \end{aligned}$	33.1	CH_{2}	$2.93 \mathrm{dt}(19.1,2.6)$	36.5	CH_{2}	3.37 dt (20.1, 2.5)	36.5	CH_{2}	$3.37 \mathrm{dt}(22.5,2.6)$
						1.91, m			$\begin{aligned} & \text { 2.03, ddd (20.1, } \\ & 5.2,0.2) \end{aligned}$			2.04 m
5	63.6	C		61.5	C		77.4	C		77.3	C	
6	62.8	CH	3.21 br s	63.9	CH	3.17 d (2.5)	74.8	CH	3.70 br t (1.9)	75.0	CH	3.70 br s
7	30.0	CH_{2}	2.05 m	26.3	CH_{2}	$2.43 \mathrm{dt}(14.0,2.5)$	29.0	CH_{2}	1.96 dt (14.0, 3.1)	29.1	CH_{2}	$\begin{aligned} & 1.96 \mathrm{~m} \\ & 1.81, \mathrm{dd}(14.0,2.7) \end{aligned}$
			1.45 m			$1.38 \mathrm{dt}(14.0,3.5)$			1.80 m			
8	28.8	CH	$\begin{gathered} 1.81 \mathrm{qd} \\ 4.2) \end{gathered}$	33.4	CH	1.90 m	33.7	CH	2.09 m	33.9	CH	2.10 m
9	43.5	CH	1.13 m	38.9	CH	1.90 m	35.3	CH	2.64 td (12.5, 3.8)	35.4	CH	2.64 td (12.4, 3.6)
10	47.6	C		48.7	C		52.5	C		52.5	C	
11	22.1	CH_{2}	1.89 m	22.8	CH_{2}	1.91 m	22.3	CH_{2}	2.18 m	22.4	CH_{2}	2.18 m
			1.42 m			$\begin{aligned} & 1.45 \mathrm{br} \mathrm{dt} \mathrm{(12.7,} \\ & 2.5) \end{aligned}$			1.34 dd (12.9, 3.0)			1.34 dd (13.0, 2.8)
12	40.2	CH_{2}	1.94 m	39.9	CH_{2}	1.91 m	40.6	CH_{2}	$2.08 \mathrm{dt}(12.9,2.7)$	41.1	CH_{2}	$\begin{aligned} & 2.08 \mathrm{~m} \\ & 1.53 \mathrm{~m} \end{aligned}$
			1.43 m			1.46 m			$1.53 \mathrm{dt}(13.2,3.0)$			
13	40.0	C		48.4	C		49.2	C		49.0	C	
14	56.6	CH	1.45 m	83.0	C		83.9	C		83.7	C	
15	71.6	CH	$\begin{aligned} & 5.16 \mathrm{dd}(11.4, \\ & 7.8) \end{aligned}$	80.8	CH	4.96 d (6.3)	80.3	CH	5.13 d (6.6)	80.4	CH	5.09 d (6.4)
16	71.7	CH	5.60 t (7.6)	31.2	CH_{2}	$\begin{aligned} & \text { 2.36, ddd (15.0, } \\ & 8.0,6.9) \end{aligned}$	31.4	CH_{2}	2.43 q (7.4)	31.8	CH_{2}	2.39 m
						1.54 dd (15.0, 9.5)			1.63 m			$1.62 \mathrm{dd}(15.0,9.5)$
17	58.3	CH	2.02 m	54.1	CH	1.78 m	54.3	CH	1.87 br t (8.6)	54.4	CH	1.87 m
18	16.4	CH_{3}	0.95 s	19.2	CH_{3}	1.29 s	19.8	CH_{3}	1.38, s	19.8	CH_{3}	1.39 s
19	17.9	CH_{3}	1.41 s	15.0	CH_{3}	1.20 s	15.0	CH_{3}	1.30 s	15.0	CHC	1.30 s
20	74.7	C		75.6	C		75.7	C		75.6		
21	20.8	CH_{3}	1.29 s	20.7	CH_{3}	1.35 s	20.8	CH_{3}	1.41 s	21.5	CH_{3}	1.30 s
22	80.4	CH	$\begin{aligned} & 4.13 \mathrm{dd}(13.3, \\ & 3.5) \end{aligned}$	80.5	CH	4.17 dd (11.5, 3.3)	81.0	CH	4.24 dd (11.7, 3.5)	81.3	CH	$4.27 \mathrm{dd}(13.5,3.4)$
23	31.1	CH_{2}		31.1	CH_{2}	$1.78 \mathrm{~m}$	31.2	CH_{2}	$1.83 \mathrm{~m}$	31.5	CH_{2}	$\begin{aligned} & 2.41 \mathrm{~m} \\ & 2.19 \mathrm{~m} \end{aligned}$
			$\begin{aligned} & 2.23 \mathrm{dd}(17.0, \\ & 3.1) \end{aligned}$			$1.39 \mathrm{dt}$			$1.45 \mathrm{dt}(13.9,3.5)$			
24	148.9	C		31.5	CH	1.69 m	31.6	CH	1.74 m	148.9	C	
25	122.3	C		40.5	CH	2.15 m	40.7	CH	2.19 m	122.3	C	
26	165.8	C		175.8	C		176.4	C		165.9	C	
27	12.7	CH_{3}	1.88 s	14.2	CH_{3}	1.16 d (6.7)	14.3	CH_{3}	1.22 d (6.7)	12.7	CH_{3}	1.89 s
28	20.9	CH_{3}	1.95 s	21.3	CH_{3}	1.09 d (6.7)	21.4	CH_{3}	1.15 d (6.6)	20.8	CH_{3}	1.97 s
29	169.8	C		169.8	C		170.6	C		170.5	C	
30	21.2	CH_{3}		21.8	CH_{3}	1.94 s	21.9	CH_{3}	2.05 s	21.9	CH_{3}	2.05 s
OH			2.31 s			3.81 br s			4.27 br s			3.75 br s
						3.45 br s			3.76 br s			3.19 br s
									2.71 br s			

$\delta_{\mathrm{H}} 4.13$ (dd, $\left.J=13.3,3.5 \mathrm{~Hz}, \mathrm{H}-22\right), 2.51$ (m, H-23a), 2.23 (dd, $J=17.0,3.1 \mathrm{~Hz}, \mathrm{H}-23 \mathrm{~b}), 5.01(\mathrm{~d}, J=10.1 \mathrm{~Hz}, \mathrm{H}-26), 3.46(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, \mathrm{OH}-26)$] with α, β-dimethyl [$\delta_{\mathrm{H}} 1.88$ (s, Me-27), 1.95 ($\mathrm{s}, \mathrm{Me}-28$); $\delta_{\mathrm{C}} 12.7$ (C-27), 20.9 (C-28)] groups.

Differences observed between $\mathbf{1}$ and 8 related to the ring D signals, where the two methylenes observed in 8 [$\delta_{\mathrm{C}} 23.8$ (C-15), 21.9 ($\mathrm{C}-16$)] were absent in $\mathbf{1}$, whereas two methines were present in $\mathbf{1}\left[\delta_{\mathrm{C}} 71.6,71.7 ; \delta_{\mathrm{H}} 5.16\right.$ ($\mathrm{dd}, J=11.4$, $7.8 \mathrm{~Hz}), 5.60(\mathrm{t}, J=7.6 \mathrm{~Hz})]$. This suggested that a substituted ring D functionality (with 15,16 -dioxygenation) is present in the structure of 1 and was confirmed subsequently by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HSQC correlated structural fragment
$\left[-\mathrm{C}(8) \mathrm{H}-\mathrm{C}(14) \mathrm{H}-\mathrm{C}(15) \mathrm{H}-\mathrm{C}(16) \mathrm{H}-\mathrm{C}(17) \mathrm{H}\right.$ at $\delta_{\mathrm{H}} 1.81$ (qd, $J=11.1,4.2 \mathrm{~Hz}, \mathrm{H}-8), 1.45(\mathrm{~m}, \mathrm{H}-14), 5.16(\mathrm{dd}, J=11.4$, $7.8 \mathrm{~Hz}, \mathrm{H}-15), 5.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-16), 2.02(\mathrm{~m}, \mathrm{H}-17)]$ and HMBC correlations $\left\{\mathrm{H}-16\right.$ to C-20 ($\delta_{\mathrm{C}} 74.7$) and C-14 ($\delta_{\mathrm{C}} 56.6$) and H -15 to a carbonyl ($\delta_{\mathrm{C}} 169.8$) in an acetoxy group [at $\delta_{\mathrm{H}} 1.99$ $\left.\left.(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 21.2,169.8\right]\right\}$. When combined, the data showed that a 15 -acetoxy-16-hydroxy functionality is present in ring D of $\mathbf{1}$. Furthermore, a $\mathrm{H}-15 \beta$ and $\mathrm{H}-16 \beta$ configuration in 1 was determined based on coupling constants $\left(J_{14,15}=11.1 \mathrm{~Hz}, J_{15,16}=\right.$ $7.6 \mathrm{~Hz}, J_{16,17}=7.6 \mathrm{~Hz}$) in conjunction with NOE correlations (H-15/Me-18; H-16/Me-18). Finally, the structure of 1 was determined as 15α-acetoxy- 16α-hydroxywithanolide D
(15α-acetoxy- $5 \beta, 6 \beta$-epoxy- $4 \beta, 16 \alpha, 20$-trihydroxy-1-oxowitha-2,24-dienolide) and subsequently named withaneomexolide A.

Compound 2 was isolated as an amorphous solid. The HRESIMS and NMR data revealed the molecular formula of 2 as $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{8}$. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HSQC spectra of 2 showed the presence of six methyls [$\delta_{\mathrm{H}} 1.09(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})$, $\delta_{\mathrm{C}} 21.3 ; \delta_{\mathrm{H}} 1.16(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), \delta_{\mathrm{C}} 14.2 ; \delta_{\mathrm{H}} 1.20(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}}$ 15.0; $\delta_{\mathrm{H}} 1.29(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 19.2 ; \delta_{\mathrm{H}} 1.35(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 20.7 ; \delta_{\mathrm{H}} 1.94$ $\left.(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 21.8\right]$, six methylenes $\left[\delta_{\mathrm{C}} 22.8,26.3,31.1,31.2,33.1\right.$, 39.9], 10 methines [including two olefinic at $\delta_{\mathrm{H}} 5.96(1 \mathrm{H}, \mathrm{dd}, J=$ $10.0,2.5 \mathrm{~Hz}), \delta_{\mathrm{C}} 128.9$ and $\delta_{\mathrm{H}} 6.83(1 \mathrm{H}, \mathrm{ddd}, J=10.0,6.1$, $2.3 \mathrm{~Hz}), \delta_{\mathrm{C}} 145.2$; with three oxygenated at $\delta_{\mathrm{H}} 3.17(1 \mathrm{H}, \mathrm{d}, J=$ $2.5 \mathrm{~Hz}), \delta_{\mathrm{C}} 63.9 ; \delta_{\mathrm{H}} 4.96(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), \delta_{\mathrm{C}} 80.8 ; \delta_{\mathrm{H}} 4.17$ $\left.(1 \mathrm{H}, \mathrm{dd}, J=11.5,3.3 \mathrm{~Hz}), \delta_{\mathrm{C}} 80.5\right]$, and eight quaternary carbons (including three carbonyl groups at $\delta_{\mathrm{C}} 203.9,175.8,169.8$ and three oxygenated carbons at $\delta_{\mathrm{C}} 83.0,75.6,61.5$), which indicated a six-ringed structure where the remaining hydrogen atoms were assigned as two hydroxy groups.

Similar to $\mathbf{1}$, the NMR data of 2 revealed an α, β-unsaturated ketone in ring A, a $5 \beta, 6 \beta$-epoxy in ring B , and 15 -acetoxy and 20-hydroxy moieties. However, three features [C-24(25) double bond; 4- and 16-hydroxy groups] observed in 1 were absent in 2. Instead, 2 was observed to contain two methylene [C-4: $\delta_{\mathrm{C}} 33.1$; $\delta_{\mathrm{H}} 2.93(1 \mathrm{H}, \mathrm{dt}, J=19.1,2.6 \mathrm{~Hz}), 1.91,(1 \mathrm{H}, \mathrm{m}) ; \mathrm{C}-16: \delta_{\mathrm{C}} 31.2$; $\delta_{\mathrm{H}} 2.36(1 \mathrm{H}, \mathrm{ddd}, J=15.0,8.0,6.9 \mathrm{~Hz}), 1.54(1 \mathrm{H}, \mathrm{dd}, J=15.0$, $9.5 \mathrm{~Hz})$] and two methine [C-24: $\delta_{\mathrm{C}} 31.5 ; \delta_{\mathrm{H}} 1.69(1 \mathrm{H}, \mathrm{m})$; $\left.\mathrm{C}-25: \delta_{\mathrm{C}} 40.5 ; \delta_{\mathrm{H}} 2.15(1 \mathrm{H}, \mathrm{m})\right]$ groups. These were supported by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY $\left[=\mathrm{C}(3) \mathrm{H}-\mathrm{C}(4) \mathrm{H}_{2}-,-\mathrm{C}(15) \mathrm{H}-\right.$ $\mathrm{C}(16) \mathrm{H}_{2}-,-\mathrm{C}(22) \mathrm{H}-\mathrm{C}(23) \mathrm{H}_{2}-\mathrm{C}(24) \mathrm{H}-\mathrm{C}(25) \mathrm{H}-,-\mathrm{C}-$ (24) $\left.\mathrm{H}-\mathrm{C}(28) \mathrm{H}_{3}-,-\mathrm{C}(25) \mathrm{H}-\mathrm{C}(27) \mathrm{H}_{3}-\right]$ and HMBC correlations $\left[\mathrm{H}_{2}-4 / \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-5\right.$, and $\mathrm{C}-6 ; \mathrm{H}-16 / \mathrm{C}-17$ and $\mathrm{C}-20$; $\mathrm{C}-24 / \mathrm{H}-22$ and $\mathrm{Me}-27 ; \mathrm{C}-25 / \mathrm{H}_{2}-23$ and $\left.\mathrm{Me}-28\right]$. Since the NMR data of 2 presented chemical shifts [C-14 ($\left.\delta_{\mathrm{C}} 83.0\right)$] and HMBC correlations [C-14/Me-18, C-14/ $\mathrm{H}_{2}-12, \mathrm{C}-14 / \mathrm{H}-15$, and $\mathrm{C}-14 / \mathrm{H}-16$] that were indicative of 14 -hydroxy and 15 -acetoxy moieties, an additional hydroxy group (at C-14) was deduced as being present in 2. Furthermore, the elucidation of 2 was confirmed by NMR comparisons, where superimposable ring D signals were observed with other 15 -acetoxy-14-hydroxy withanolides, such as physapubenolide. ${ }^{9}$

Analysis of the γ-effect of OH-14 to C-12 and C-18 ${ }^{9}$ allowed a determination of the configuration of this group in 2 . It has been shown that when compared to 14 -unsubstituted withanolides [such as withalongolide $\mathrm{H}\left(\delta_{\mathrm{C}-12} 39.9, \delta_{\mathrm{C}-18} 12.0\right)$], the presence of a 14α-hydroxy group results in the shielding of C-12, whereas a 14β-hydroxy substituent deshields C-18. ${ }^{9}$ Therefore, the absence of the shielding at $\mathrm{C}-12$ and the presence of deshielding at $\mathrm{C}-18$ ($\delta_{\mathrm{C}-12} 39.9, \delta_{\mathrm{C}-18} 19.2$) suggested that a $14 \beta-\mathrm{OH}$ group is present in 2 , which is consistent with the results obtained for other 14β hydroxy withanolides. ${ }^{9,10}$ The presence of peak splitting of H-15 (d, $J=6.3 \mathrm{~Hz}$), which is observed only in $\mathrm{H}-15 \beta$-containing compounds, ${ }^{9}$ suggested that a 15α-acetoxy group is present in 2 . This deduction was subsequently confirmed by related NOESY correlations and data comparison against reported 15-acetoxy-14-hydroxy withanolides, such as physapubenolide. ${ }^{9,11}$ Similarly, the stereochemistry of the 17β-side chain of 2 was determined based on the related NOESY correlations and data comparison against 20 -hydroxy withanolides, such as 8 . The β orientation of 27 -methyl and α orientation of 28 -methyl were deduced from the NOESY correlations between $\mathrm{Me}-27$ and $\mathrm{H}-22$ and between $\mathrm{H}-24$ and $\mathrm{Me}-27$, respectively. Accordingly, the structure of 2 was identified as 15α-acetoxy- $5 \beta, 6 \beta$-epoxy-14 $\beta, 20$-dihydroxy-1-oxowitha-2-enolide and named withaneomexolide B.

Compound $\mathbf{3}$ was isolated as an amorphous solid and found to possess a molecular formula of $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{9}$ based on its HRESIMS and NMR data (Table 1). Similar to 2, the NMR spectra of 3 showed the presence of a 20 -hydroxy bearing a nine-carbon side chain (an α, β-saturated- δ-lactone system with α, β-dimethyl) as well as a 14 -hydroxy- 15 -acetoxy ring D moiety. In contrast to ring B of 2 , the NMR spectra revealed the absence of a $5 \beta, 6 \beta$-epoxy functionality and the presence of a 5,6 -dihydroxy unit in 3 . This deduction was based on chemical shifts [$\delta_{\mathrm{C}} 77.4$ (C-5), 74.8 (C-6); $\left.\delta_{\mathrm{H}} 3.70(1 \mathrm{H}, \mathrm{brt}, J=1.9 \mathrm{~Hz}, \mathrm{H}-6)\right]$, HMBC correlations [Me-19/C-5; H-6/C-10, C-5, C-8], and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations $\left[-\mathrm{C}(6) \mathrm{H}-\mathrm{C}(7) \mathrm{H}_{2}-\mathrm{C}(8) \mathrm{H}-\right.$ at $\delta_{\mathrm{H}} 3.70(\mathrm{H}-6)$, $1.96(1 \mathrm{H}, \mathrm{dt}, J=14.0,3.1 \mathrm{~Hz}, \mathrm{H}-7 \beta), 1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \alpha), 2.09$ ($\mathrm{m}, \mathrm{H}-8$)]. Moreover, the $5 \alpha, 6 \beta$-dihydroxy orientation of 3 was determined based on coupling constants $[\mathrm{H}-6(1.9 \mathrm{~Hz})]$ and ${ }^{13} \mathrm{C}$ NMR data comparison against other published $5 \alpha, 6 \beta$-dihydroxy withanolides [jaborosalactone $\mathrm{D},{ }^{12}$ 16-oxojaborosalactone $\mathrm{D},{ }^{13}$ acnistin J^{13} withajardin $\left.\mathrm{G}^{13}\right]$. Therefore, compound 3 was identified as 15α-acetoxy- $5 \alpha, 6 \beta, 14 \beta, 20$-tetrahydroxy-1-oxowitha-2-enolide and named withaneomexolide C.

Compound 4 was isolated as a colorless, amorphous solid and on the basis of HRESIMS and NMR data was assigned a molecular formula of $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{9}$. The NMR data (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, and HMBC) of $\mathbf{3}$ and $\mathbf{4}$ were superimposable except for their side chain signals. Specifically, instead of the two methines observed in 3, two olefinic signals were observed in 4 [$\delta_{\mathrm{C}} 148.9$ (C-24), 122.3(C-25)]. The presence of an α, β-dimethyl moiety [$\delta_{\mathrm{H}} 1.89$ ($\mathrm{s}, \mathrm{Me}-27$), 1.97 ($\mathrm{s}, \mathrm{Me}-28$)] supported the presence of an α, β-unsaturated- δ-lactone system in 4. Furthermore, the NMR signals of this functional group matched those of $\mathbf{1}$. Therefore, the structure of 4 (withaneomexolide D) was assigned as 15α-acetoxy- $5 \alpha, 6 \beta, 14 \beta, 20$-tetrahydroxy-1-oxowitha-2,24dienolide.

Through HRESIMS and NMR experiments, the molecular formula of compound 5 was found to be $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{14}$ and could be assigned as an isomer of a sucrose ester also isolated in this study, namely, nicandrose D (7). ${ }^{14}$ The NMR data of 5 and 7 exhibited signals typical of saccharides, such as for hydroxy groups, along with a terminal carbon [$\delta_{\mathrm{C}} 104.1$ and 90.1] , and connected structural rings $[-\mathrm{OC}(1) \mathrm{H}(\mathrm{O})-\mathrm{C}(2) \mathrm{H}(\mathrm{O})-\mathrm{CH}(3)(\mathrm{O})-$ $\mathrm{CH}(4)(\mathrm{O})-\mathrm{CH}(5)(\mathrm{O})-\mathrm{C}(6) \mathrm{H}_{2}(\mathrm{O})-$ and $-\mathrm{CH}\left(3^{\prime}\right)(\mathrm{O})-$ $\mathrm{CH}\left(4^{\prime}\right)(\mathrm{O})-\mathrm{CH}\left(5^{\prime}\right)(\mathrm{O})-\mathrm{C}\left(6^{\prime}\right) \mathrm{H}_{2}(\mathrm{O})-$, with HMBC correlations observed between $\mathrm{H}-1\left(\delta_{\mathrm{H}} 5.53,1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}\right)$ and C-2' (δ_{C} 104.1)]. The NMR signals of 5 and 7 were superimposable except for their C-2 and C- 3^{\prime} substitutions. Specifically, a decanoyl (C-2) and an isobutyryl (C-3') were found in 7, whereas 5 was observed to contain nonanoyl (C-2) and 2-methylbutanoyl (C-3') moieties. The presence of a nonanoyl $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}-\right)$ moiety in 5 was deduced on the basis of HRESIMS and the integration of proton signals at $\delta_{\mathrm{H}} 1.25$. In turn, the 2-methylbutanyl moiety [$\delta_{\mathrm{C}} 16.4,40.9,27.1,11.6 ; \delta_{\mathrm{H}} 1.21(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 2.57(1 \mathrm{H}, \mathrm{tq}$, $J=7.0,6.8 \mathrm{~Hz}), 1.76 \mathrm{dqd}(J=21.2,7.0,7.0 \mathrm{~Hz}), 1.58 \mathrm{dqd}(J=21.2$, $7.3,6.7 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz} \mathrm{~s})$] connected to $\mathrm{C}-\mathbf{3}^{\prime}$ in 5 was revealed from ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations and confirmed by HMBC correlations $\left\{\mathrm{H}-3^{\prime}\left[\delta_{\mathrm{H}} 5.24(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})\right], \mathrm{H}-5^{\prime \prime \prime \prime}\left(\delta_{\mathrm{H}}\right.\right.$ $1.21)$, and $\mathrm{H}_{2}-3^{\prime \prime \prime \prime}\left(\delta_{\mathrm{H}} 1.76,1.58\right)$ to the carbonyl at $\delta_{\mathrm{C}} 177.8$ ($\left.\left.\mathrm{C}-1^{\prime \prime \prime \prime}\right)\right\}$. The stereochemistry of $\mathrm{C}-2^{\prime \prime \prime \prime}$ could not be determined, as no NOESY correlation of $\mathrm{H}_{2}-3^{\prime \prime \prime \prime}$ or $\mathrm{Me}-5^{\prime \prime \prime \prime}$ was observed. Therefore, compound 5 was identified as an isomer of 7 and named nicandrose E.

On the basis of HRESIMS and NMR data, the molecular formula of the amorphous solid 6 was found to be $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{14}$. As was the case with 5 , the ${ }^{1} \mathrm{H}$ NMR spectrum of 6 was also

Table 2. ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{1} \mathrm{H}$ NMR (500 MHz) Data of Sucrose Esters $5-7$ in CDCl_{3}

position	5			6			7		
	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(J\right.$ in $\left.\mathrm{H}_{\mathrm{Z}}\right)$	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(\mathrm{J}\right.$ in $\left.\mathrm{H}_{\mathrm{Z}}\right)$	$\delta_{\text {C }}$	type	$\delta_{\mathrm{H}}\left(J\right.$ in $\left.\mathrm{H}_{\mathrm{Z}}\right)$
1	89.9	CH	5.53 d (3.7)	90.1	CH	5.53 d (3.7)	90.0	CH	5.49 s
2	70.0	CH	$4.87 \mathrm{dd}(10.3,3.7)$	70.2		$4.83 \mathrm{~d}(10.3,3.6)$	70.3	CH	4.79 d (10.3)
3	72.7	CH	5.21 t (9.8)	72.5	CH	5.22 m	72.1	CH	5.23 t (10.2)
4	69.8	CH	3.54 m	69.7	CH	3.52 m	69.2	CH	3.55 t (9.8)
5	73.8	CH	4.01 ddd (9.9, 5.7, 2.2)	73.6	CH	3.99 m	73.2	CH	3.94 m
6	62.1	CH_{2}	3.95 dd (11.6, 2.7)	62.0	CH_{2}	3.93 m	61.6	CH_{2}	3.86 m
			3.76 m						
1^{\prime}	63.9	CH_{2}	3.53 m	63.8	CH_{2}	3.53 m	63.3	CH_{2}	3.49 m
			3.46 dd (12.6, 4.6)						
2^{\prime}	104.0	C		104.1	C		104.0	C	
3^{\prime}	78.0	CH	5.24 d (8.5)	78.2	CH	5.23 m	77.9	CH	5.21 d (8.6)
4^{\prime}	71.3	CH	4.46 t (8.6)	71.7	CH	4.42 brt (8.0)	72.1	CH	4.33 t (7.6)
5^{\prime}	82.3	CH	3.95 m	82.3	CH	3.928 m	82.3	CH	3.93 m
6^{\prime}	60.9	CH_{2}	3.90 br d (11.1)	61.1	CH_{2}		61.7	CH_{2}	3.74 m
			3.77 m			3.75 m			
$1{ }^{\prime \prime}$	173.3	C		173.4	C		173.4	C	
$2^{\prime \prime}$	34.2	CH_{2}	$2.24 \mathrm{dt}(16.2,7.6)$	34.2	CH_{2}	2.24 dt (16.2, 7.7)	34.2	CH_{2}	$2.21 \mathrm{dt}(16.5,7.5)$
			2.22 dtt (16.2, 7.5)			2.22 dt (16.2, 7.7)			2.19 dt (16.5, 7.5)
3 "	24.8	CH_{2}	1.53 m	24.8	CH_{2}	1.53 m	24.8	CH_{2}	1.49 m
$4 \prime$	29.3	CH_{2}	1.25 m	29.3	CH_{2}		29.3	CH_{2}	1.21 m
$5 \prime \prime$	29.5	CH_{2}	1.25 m	29.5	CH_{2}	1.24 br m	29.5	CH_{2}	
$6{ }^{\prime \prime}$	29.6	CH_{2}	1.25 m	29.5	CH_{2}	1.24 br m		CH_{2}	
7"	32.1	CH_{2}	1.24 m	29.6	CH_{2}			CH_{2}	
$8^{\prime \prime}$	22.9	CH_{2}	1.27 m	32.1	CH_{2}	1.240 m	32.0	CH_{2}	1.21 m
9 "	14.3	CH_{3}	0.87 to (6.9)	22.8	CH_{2}	1.27 m	22.8	CH_{3}	1.24 m
$10^{\prime \prime}$				14.3	CH_{3}	0.87 d (6.9)	14.2		0.85 t (6.9)
$1^{\prime \prime \prime}$	177.9	C		177.8	C		177.4	C	
$2^{\prime \prime \prime}$	34.3	CH	$2.55 \mathrm{hept}^{\text {a }}$ (7.0)	34.2	CH_{2}	2.55 hept (7.0)	34.2	CH	2.51 hept (7.0)
$3{ }^{\prime \prime \prime}$	19.2	CH_{3}	1.12 d (7.0)	19.2	CH_{3}	1.14 d (7.0)	18.8	CH_{3}	1.08 d (7.0)
$4^{\prime \prime \prime}$	19.0	CH_{3}	1.13 d (7.0)	19	CH_{3}	1.12 d (7.0)	19.1	CH_{3}	1.10 d (7.0)
$1^{\prime \prime \prime \prime}$	177.8	C		174.2	C		178.0	C	
$2^{\prime \prime \prime \prime}$	40.9	CH	$2.57 \mathrm{tq}(7.0,6.8)$	43.1	CH_{2}	2.39 dd (15.1, 7.0)	34.0	CH	2.69 hept (7.0)
						$2.32 \mathrm{dd}(15.1,7.4)$			
$3^{\prime \prime \prime \prime}$	27.1	CH_{2}	1.76 dqd (21.2, 7.0, 7.0)	25.9	CH	$2.14 \text { non }^{b}(6.8)$	18.9	CH_{2}	1.18 m
			1.58 dqd (21.2, 7.3, 6.7)						
$4^{\prime \prime \prime \prime}$	11.6	CH_{3}	0.95 t (7.5)	22.4	CH_{3}	0.99 d (6.8)	19.4	CH_{3}	1.22 m
$5^{\prime \prime \prime \prime}$	16.4	CH_{3}	1.21 d (7.0)	22.6	CH_{3}	1.00 d (6.6)			
OH			4.57 br s			4.74 br s			5.10 br s
			4.35 br s			4.44 br s			4.66 br s
			4.22 br s			4.39 br s			4.27 br s
			3.75 br s			4.01 br s			3.93 br s
			3.37 br s			3.56 br s			3.48 br s
${ }^{a} \text { hept }=\text { heptet. }{ }^{b} \text { non }=\text { nonet. }$									

almost superimposable with that of 7 . The differences observed pertained to the side chain [$\delta_{\mathrm{H}} 1.40$ to $2.60, \mathrm{C}-3$ and $\mathrm{C}-3^{\prime}$] of 6 , where the 3-methylbutanyl moiety $\left[\delta_{\mathrm{C}} 22.4,22.6,25.9,43.1 ; \delta_{\mathrm{H}}\right.$ $0.99(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 2.14(1 \mathrm{H}$, non, $J=6.8 \mathrm{~Hz}$), 2.32 (dd, $J=15.1,7.4 \mathrm{~Hz}$), 2.39 (dd, $J=15.1$, $7.0 \mathrm{~Hz})$] at $\mathrm{C}-3^{\prime \prime}$ was determined on the basis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC correlations $\left[\mathrm{H}-3^{\prime}\left(\delta_{\mathrm{H}} 5.23,1 \mathrm{H}, \mathrm{m}\right)\right.$ and $\mathrm{H}-3^{\prime \prime \prime \prime}\left(\delta_{\mathrm{H}}\right.$ 2.14) to the carbonyl at $\left.\delta_{\mathrm{C}} 174.2\left(\mathrm{C}-1^{\prime \prime \prime}\right)\right]$. Therefore, compound 6 was identified as a 3^{\prime}-(3-methylbutanyl)oxy derivative of 7 and named nicandrose F.

In addition to $\mathbf{1 - 6}$, the present phytochemical investigation on P. neomexicana also resulted in the isolation of two known compounds, which were identified by spectroscopic comparisons with values reported in the literature, namely, nicandrose $D(7)^{14}$ and the labdane diterpenoid 12-O-acetylphysacoztomatin. ${ }^{15}$

Compounds $1-7$ were examined for their cytotoxicity against human breast cancer cell (MDA-MB-231 and MCF-7) lines, where two known bioactive withanolides were utilized as positive controls, namely, withaferin $\mathrm{A}\left(\mathrm{IC}_{50} 0.5\right.$ and $\left.1.3 \mu \mathrm{M}\right)$ and withalonglide $\mathrm{B}\left(\mathrm{IC}_{50} 0.2\right.$ and $\left.0.8 \mu \mathrm{M}\right)$. Compound 2 exhibited cytotoxicity in both cell lines tested, with IC_{50} values of 1.7 and $6.3 \mu \mathrm{M}$, respectively.

EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured with a Rudolph RS Autopol IV automatic polarimeter. UV spectra were scanned on a Varian Cary 50 UV-visible spectrophotometer. IR data were obtained with a Thermo Nicolet Avatar 380 FT-IR spectrometer. NMR spectra were recorded with a Bruker AV-400 or AV-500 instrument with a cryoprobe used for ${ }^{1} \mathrm{H}$ NMR, APT, COSY,

HSQC, HMBC, and NOESY/ROESY experiments. Chemical shift values are given in δ (ppm) using the peak signals of the solvent $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26\right.$ and $\left.\delta_{\mathrm{C}} 77.23\right)$ as references, and coupling constants are reported in Hz. All ESIMS data were measured with an Agilent 1200 Series LC coupling with an ion-trap 6310 mass spectrometer, while HRESIMS data were collected with an LCT Premier time-of-flight mass spectrometer (Waters Corp., Milford, MA, USA). Column chromatography was performed on CombiFlash columns (Teledyne Isco, Lincoln, NE, USA) or Sephadex LH-20 (GE Healthcare, Piscataway, NJ, USA) columns. Normal-phase silica gel G TLC plates (w/UV 254) and reversed-phase C_{18} TLC plates (w/UV 254) (Sorbent Technologies, Atlanta, GA, USA) were used for fraction and compound detection. The spots were visualized using UV light at 254 nm and $10 \% \mathrm{EtOH}$-sulfuric acid spray reagent. Semipreparative HPLC was performed on an Agilent 1200 unit equipped with a DAD detector, utilizing a Phenomenex Luna RP-18 column ($250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$).

Plant Material. The above-ground biomass (stems, leaves, and flowers) of Physalis neomexicana was collected in a pinyon-juniper grassland habitat (lat 35.2318°, long 105.92197°) in September, 2013, by K.K., Hillary Loring, and Leanne Martin in Santa Fe County, New Mexico. A botanical specimen of this species (Kindscher 4115) was deposited in the R.L. McGregor Herbarium of the University of Kansas. Botanical identification was performed by K.K. at the Kansas Biological Survey, University of Kansas.

It should be noted that P. neomexicana is a distinct species when observed in its natural habitat. Several scientific names have been used for this plant in the literature including P. subulata Rydb. var. neomexicana (Rydb.) Waterf. ex Kartesz \& Gandhi and P. foetens Poir. var. neomexicana (Rydb.) Waterf. ${ }^{16}$ The name P. neomexicana was recognized in the 2011 update to the Solanaceae of North America database; ${ }^{17}$ therefore this name is used in this study.

Extraction and Isolation. The collected biomass was air-dried, ground to a coarse powder (1100 g), and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(50: 50,8.0 \mathrm{~L})$ at room temperature. After removing the solvents under vacuum, the extract (174.8 g) was suspended in 2.0 L of $\mathrm{H}_{2} \mathrm{O}$, followed by successive partitions with equal volumes of ethyl acetate (EtOAc) to yield the EtOAc fraction $(85.0 \mathrm{~g})$, which was applied subsequently to silica gel $(30 \times 400 \mathrm{~mm})$ MPLC (gradient hexane $80: 20$ to $20: 80)$ to afford fractions fr1 to fr3. Subjecting fr1 $(0.4 \mathrm{~g})$ to CombiFlash CC (12 g of silica gel; eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 6: 1$ to 2:1) resulted in fr1-3, which was subjected subsequently to semipreparative HPLC, eluted by isocratic $60 \% \mathrm{CH}_{3} \mathrm{CN}$ to afford $8(7.8 \mathrm{mg})$. Applying fr2 (2.5 g) to CombiFlash CC ($50 \mathrm{~g} \mathrm{RP-C18;} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ elution) yielded two fractions, which were subjected to semipreparative HPLC (isocratic $\left.40 \% \mathrm{CH}_{3} \mathrm{CN}\right)$ to afford $2(54.7 \mathrm{mg})$ and $3(4.7 \mathrm{mg})$, respectively. Subjecting fr3 $(1.2 \mathrm{~g})$ to Sephadex $\mathrm{LH}-20 \mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 3: 2)$ afforded 3-1 (0.7 g) and 3-2 (0.3 g). Reversed-phase CombiFlash separation with a gradient of $30-65 \% \mathrm{CH}_{3} \mathrm{CN}$ of fr 3-1 and subsequent semipreparative HPLC (isocratic $50 \% \mathrm{CH}_{3} \mathrm{CN}$) yielded 1 $(1.4 \mathrm{mg}), 5(18.5 \mathrm{mg}), 6(17.7 \mathrm{mg})$, and $7(73.9 \mathrm{mg})$. Applying fr3-2 $(0.3 \mathrm{~g})$ to CombiFlash CC (40 g of ODS; gradient $30-50 \% \mathrm{CH}_{3} \mathrm{CN}$) followed by semipreparative HPLC (isocratic $30 \% \mathrm{CH}_{3} \mathrm{CN}$) purification yielded $4(1.2 \mathrm{mg}), 6(18.3 \mathrm{mg})$, and $7(43.1 \mathrm{mg})$.

Withaneomexolide A (1): solid; $[\alpha]^{25}{ }_{\mathrm{D}}+22.5\left(c 0.01, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{EtOH}) \lambda_{\max }(\log \varepsilon) 228$ (4.24) nm; IR (neat) $\nu_{\max } 3422$ (br), 2927, 1653, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRESIMS m / z $567.2549[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{9} \mathrm{Na}, 567.2570\right)$.

Withaneomexolide B (2): solid; $[\alpha]^{25}{ }_{\mathrm{D}}-3.2\left(c 0.37, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{EtOH}) \lambda_{\max }(\log \varepsilon) 226$ (4.07) nm; IR (neat) $\nu_{\text {max }} 3382$ (br), 2945, 1724, 1679, 1380, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, see Table 1 ; HRESIMS $m / z 553.2756[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{Na}$, 553.2777).

Withaneomexolide C (3): solid; $[\alpha]^{25}{ }_{\mathrm{D}}-8.6\left(c 0.03, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{EtOH}) \lambda_{\max }(\log \varepsilon) 225$ (4.55) nm; IR (neat) $\nu_{\text {max }} 3361$ (br), 2952, 1731, 1669, 1453, 1375, $1025 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRESIMS $m / z 571.2855[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{Na}$, 571.2883).

Withaneomexolide D (4): solid; $\left[\alpha{ }^{25}{ }_{\mathrm{D}}-15.0\left(c 0.01, \mathrm{CHCl}_{3}\right)\right.$; UV $(\mathrm{EtOH}) \lambda_{\text {max }}(\log \varepsilon) 223(4.40) \mathrm{nm}$; IR (neat) $\nu_{\text {max }} 3534(\mathrm{br}), 3142(\mathrm{br})$,

2862, 1653, $1021 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HRESIMS $m / z 569.2702[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{9} \mathrm{Na}, 569.2727$).

Nicandrose $E(5)$: solid; $[\alpha]_{\mathrm{D}}^{25}+30.0\left(c 0.13, \mathrm{CHCl}_{3}\right)$; UV $\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max }(\log \varepsilon) 200(4.09) \mathrm{nm}$; IR (neat) $\nu_{\max } 3393$ (br), 2926, 1732, 1461, 1045, $1001 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, see Table 2; HRESIMS m / z $659.3273[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{14} \mathrm{Na}, 659.3255\right)$.

Nicandrose F (6): solid; $[\alpha]_{\mathrm{D}}^{25}+34.7\left(c 0.13, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}\left(\mathrm{CHCl}_{3}\right)$ $\lambda_{\max }(\log \varepsilon) 229$ (3.98) nm; IR (neat) $\nu_{\max } 3346(\mathrm{br}), 2929,1735,1463$, $1023 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, see Table 2; HRESIMS m / z $673.3373[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{14} \mathrm{Na}, 673.3411$).

Cytotoxicity Bioassays. The MTT-based cytotoxicity assays were performed as previously reported. ${ }^{18}$ The human breast cancer cell (MCF-7 and MDA-MB-231) lines utilized in this study were purchased from American Type Culture Collection (ATCC). In general, six concentrations ranging from 10 nM to $100 \mu \mathrm{M}$ were tested for compounds. The IC_{50} values were calculated via sigmoid curve fitting using GraphPad Prism 5.0 software. Withaferin $\mathrm{A}\left(\mathrm{IC}_{50} 0.5\right.$ and $\left.1.3 \mu \mathrm{M}\right)$ and withalongolide $\mathrm{B}\left(\mathrm{IC}_{50} 0.2\right.$ and $\left.0.8 \mu \mathrm{M}\right)$ were used as positive controls in this test.

Table 3. Cytotoxicity of Compounds against Two Human Breast Cancer Cell Lines ${ }^{a}$

compound	$\begin{gathered} \text { MDA-MB-231 } \\ (\text { mean } \pm \mathrm{SD}, \mu \mathrm{M}) \end{gathered}$	$\begin{gathered} \text { MCF-7 } \\ (\text { mean } \pm \mathrm{SD}, \mu \mathrm{M}) \end{gathered}$
2	1.7 ± 0.2	6.3 ± 1.2
withaferin A (positive control 1)	0.5 ± 0.04	1.3 ± 0.2
withalongolide B (positive control 2)	0.2 ± 0.02	0.8 ± 0.2
${ }^{a} \mathrm{IC}_{50}$ values averaged with three independent repeats.		

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.5b00698.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR (APT) of withaneomexolides A-$\mathrm{D}(\mathbf{1}-4)$ and nicandroses $\mathrm{E}(5)$ and $\mathrm{F}(6)$, together with 2D NMR spectra of $\mathbf{1 - 3 , 5}$, and 6 (PDF)

AUTHOR INFORMATION

Corresponding Author

*Tel: +01-785-864-4844. Fax: +01-785-864-5326. E-mail: btimmer@ku.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by grants IND 0061464 from the Kansas Biosciences Authority (KBA) and Center for Heartland Plant Innovations (HPI) and RIC 2506007-700 from the KU Research Innovation Fund (awarded to B.N.T.). The authors are grateful for NSF MRI Grant 0320648 and NIH Shared Instrumentation Grants S10RR024664 and S10RR014767, which were used to purchase the Bruker AV-400 and AVIII500 spectrometers and the software. The authors are also grateful to Dr. Huaping Zhang and Mr. Robert J. Gallagher for their proofreading of the manuscript and valuable comments.

REFERENCES

(1) Zhang, H.; Samadi, A. K.; Cohen, M. S.; Timmermann, B. N. Pure Appl. Chem. 2012, 84, 1353-1367.
(2) Zhang, H.; Cao, C. M.; Gallagher, R. J.; Day, V. W.; Kindscher, K.; Timmermann, B. N. Phytochemistry 2015, 109, 147-153.
(3) Cao, C. M.; Zhang, H.; Gallagher, R. J.; Day, V. W.; Kindscher, K.; Grogan, P.; Cohen, M. S.; Timmermann, B. N. J. Nat. Prod. 2014, 77, 631-639.
(4) Zhang, H.; Samadi, A. K.; Gallagher, R. J.; Araya, J. J.; Tong, X.; Day, V. W.; Cohen, M. S.; Kindscher, K.; Gollapudi, R.; Timmermann, B. N. J. Nat. Prod. 2011, 74, 2532-2544.
(5) Castetter, E. F. U. New Mexico Bull. Biol. Ser. 1935, 4, 39-40.
(6) Castetter, E. F.; Opler, M. E. U. New Mexico Bull. Biol. Ser. 1936, 4, 3-63.
(7) Kindscher, K.; Long, Q.; Corbett, S.; Loring, H.; Cohen, M.; Timmermann, B. N. Econ. Bot. 2012, 66, 298-310.
(8) Cordero, C. P.; Morantes, S. J.; Paez, A.; Rincon, J.; Aristizabal, F. A. Fitoterapia 2009, 80, 364-368.
(9) Glotter, E.; Sahai, M.; Kirson, I.; Gottlieb, H. E.J. Chem. Soc., Perkin Trans. 1 1985, 2241-2245.
(10) Blunt, J. W.; Stothers, J. B. Org. Magn. Reson. 1977, 9, 439-464.
(11) Shingu, K.; Marubayashi, N.; Ueda, I.; Yahara, S.; Nohara, T. Chem. Pharm. Bull. 1991, 39, 1591-1593.
(12) Veleiro, A. S.; Burton, G.; Gros, E. G. Phytochemistry 1985, 24, 1799-1802.
(13) Nicolás, F. G.; Reyes, G.; Audisio, M. C.; Uriburu, M. L.; González, S. L.; Barboza, G. E.; Nicotra, V. E. J. Nat. Prod. 2015, 78, 250-257.
(14) Maldonado, E.; Torres, F. R.; Martínez, M.; Pérez-Castorena, A. L. J. Nat. Prod. 2006, 69, 1511-1513.
(15) Pérez-Castorena, A. L.; Martínez, M.; Maldonado, E. J. Nat. Prod. 2010, 73, 1271-1276.
(16) The PLANTS Database, USDA, NRCS. http://plants.usda.gov.
(17) Integrated Taxonomic Information System: Solanaceae of North America, http://www.itis.gov.
(18) Wu, X.; Li, M.; Qu, Y.; Tang, W.; Zheng, Y.; Lian, J.; Ji, M.; Xu, L. Bioorg. Med. Chem. 2010, 18, 3812-3822.

[^0]: Received: August 6, 2015

